Compound Inequalities!

Before we learn about them, we are going to have a quick refresher on SETs!

REVIEW

Set Notation

A Set is a collection of "well-defined" objects.

"well-defined means that there is a rule for determining whether or not the object is in the set.

Elements are the objects in a set.

We use curly braces { } to encolse the elements. If we have set D that includes elements 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, then we would write it like:

$$D=\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

When we list the elements out like this, we are representing the set using the Roster Method.

 a.) Use the Roster Method to represent the set of all even digits.

Set Notation Cont.

Set-Builder Notation is a way to denote a set.

For Example: The numbers in set $D=\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ are called Digits. Set-Builder Notaion would be $D=\{x | x \text{ is a digit}\}$.

We name sets by using capital letters.

Ex: We could name the set of even numbers E. So, E={x|x is an even number}

When we talk about rules for sets, we usually use the sets A and B.

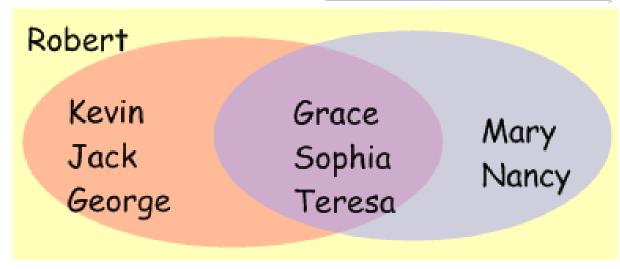
Most of our definitions will have sets A and B.

END of REVIEW

Sets

Consider the table:

Let set A be the set of all students whose age is less than 25.


Let set B be the set

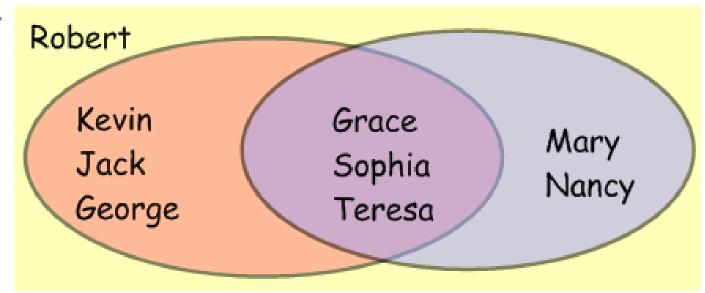
	of all students are female.	who
ia.		

Student	Age	Gender
Grace	19	F
Sophia	23	F
Kevin	20	М
Robert	32	М
Jack	19	М
Mary	35	F
Nancy	40	F
George	22	М
Teresa	20	F

A= {Grace, Sophia, Kevin, Jack, George, Teresa}

B= {Grace, Sophia, Mary, Nancy, Teresa}

<u>Sets</u>


Example 1:

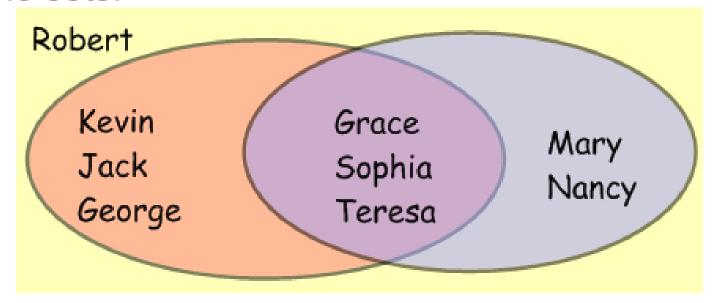
a.) List all the students that are in set A or set B.

This is called the Union of the sets.

Writen as:

 $A \cup B$

<u>Sets</u>


Example 1 (cont.):

b.) List all the students that are in Aand B.

This is called the Intersection of the sets.

Writen as:

 $A \cap B$

Example 2:

Find the Intersection and the Union of the sets.

$$A = \{1, 3, 5, 7, 9\}$$

$$B = \{1, 2, 3, 4, 5\}$$

Example 3:

Find the Intersection and the Union of the sets.

$$A = \{x \mid x \le 2\}, B = \{x \mid x \ge -1\}, C = \{x \mid x < -3\}$$

a.) Determine $A \cap B$. Graph the set and write in set builder notation and interval notation.

Example 3:

Find the Intersection and the Union of the sets.

$$A = \{x \mid x \leq 2\}, B = \{x \mid x \geq -1\}, C = \{x \mid x < -3\}$$

b.) Determine $A \cup C$ Graph the set and write in set builder notation and interval notation.

Compound Inequalities:

Compound inequalities are just two regular inequalities smashed into one using "and" or "or".

For Example:

Two regular inequalities are 3x + 1 > 4, 2x - 3 < 7. If we put an "and" or an "or" in between, then we make a compound inequality.

$$3x + 1 > 4$$
 and $2x - 3 < 7$

Example 4: Inequalities involving "AND"

Solve 3x + 2 > -7 and $4x + 1 \le 9$. Graph the solution set.

Steps to solve a compound inequalitiy involving "and":

Step 1: Solve each inequality separately.

Step 2: Find the INTERSECTION of the solution sets.

We can write inequalities involving "and" a little more compactly.

If we have a < b and our answers arex > a and x < b, we can write them like this:

For example:

If we have x > -2 and x < 5, we can write them like this:

$$-2 < x < 5$$

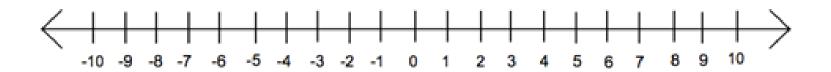
Example 5:

Solve -3 < -4x + 1 < 13. Graph the solution set.

Example 6: Inequalities involving "OR"

Solve
$$\frac{1}{2}x - 1 < 1$$
 or $\frac{2x - 1}{3} \ge -1$

Graph the solution set.


Steps to solve a compound inequality involving "or":

Step 1: Solve each inequality separately.

Step 2: Find the UNION of the solution sets.

Example 7: Solve and graph. 5(x + 2) > 20 or 4(x - 4) < -20

Ex 8: In 2005, a married couple filing a joint federal tax return whose income places them in the 25% tax bracket will pay federal income taxes between \$8180 and \$23,317.50, inclusive. The couple must pay federal income taxes equal to \$8180 plus 25% of the amount over \$59,400. Find the range of taxable income the couple makes in order for them to be in the 25% tax bracket.

Step 1: Identify

We need to find the range of taxable income for a married couple in the 25% tax bracket. This is a direct translation problem involving an inequality.

Step 2: Name

Let's have t represent the taxable income.

Step 3: Translate Find the range of taxable income.

The federal tax bill equals \$8180 plus 25% of the taxable income over \$59,4000. Because the tax bill is between \$8180 and \$23,317.50, we have:

 $8180 \le 8180 + 0.25(t - 59,400) \le 23,317.50$

Step 4 : Solve

Step 5: Check

Find the range of taxable income.

Step 6: Answer the Question

Homework:

Pg 109-112: #'s 2, 4, 5, 7, 9, 11-19 all, 21-43 odds, 79, 80, 81, 85 (30 problems)

On #'s 17 - 43, please give the intersection/union in set builder notation, interval notation, and graph.

Homework: Alternative

```
Pg 109-112: #'s 2, 4, 5, 7, 9, 11-17 all, 19, 21-25 odds, 33, 37-43 odds, 79, 80, 83
```

(24 problems)

On #'s 17 - 43, please give the intersection/union in set builder notation, interval notation, and graph.