By the end of the lesson, you should be able to:

- ~ Tell if a RELATION is a function.
 - *Remember that a relation is a
 - Mapping
 - Set of Coordinate Pairs
 - ~ Equation
 - ~ Graph
- ~ Find the value of a function
- ~ Graph a function

Determine whether a Mapping is a function.

The Mapping shows the relationship between states and randomly selected Senators from 2005. We could say the relation (or relationship) is "is represented by".

Determine whether a Mapping is a function.

Defintion

Function: A function is a relation in which each element in the domain (the inputs) of the relation corresponds to exactly one element in the range (the outputs) of the relation.

· lech X goes to exactly one y.

Determine whether a Mapping is a function.

Determine whether a Mapping is a function.

Function or not?

yes

Note:

Functions are always relations, but not all relations are functions!

Function or not?

a.) {(1,3), (-1,4), (0,6), (2, 8)}

b.) {(-2, 6), (-1,3), (0,2), (1,3), (2, 6)}

V-65

c.) $\{(0,3), (1,4), (4,5), (9,5), (4,1)\}$

Function or not?

a.) {(1,3), (~1,4), (0,6), (2, 8)} Function

c.) {(0,3), (1,4), (4, 5), (9,5), (4, 1)}
Not a Function ~ 4 goes to too many outputs.

Note:

In a function, two different inputs cannot correspond to the same output, but two different ouputs can be the result of a single input.

- ~ 2 x's or "domains" go to 1 y (range) is BAD.
- ~ 1 x "domain" go to 2 y's "range" is **K**.

Determine if an equation is a function.

To determine if an equation is a function, we need to:

- 1. Solve for y
- 2. Check to see if one input (x) results in ONLY one y (output).

Lesson 2.3: Graphs, Relations, and Functions

Examples:

a.)
$$y = -2x + 5$$

yes
function

$$y = x^2 + 5x$$

b.)
$$y = \pm 3x$$

NO

d.)
$$x + y^2 = 9$$
 $\sqrt{y^2 = 9 - x}$
 $\sqrt{y^2 = 9 - x}$
 $\sqrt{y^2 = 19 - x}$

Lesson 2.3: Graphs, Relations, and Functions

Examples:

$$y = -2x + 5$$
Yes

b.)
$$y = \pm 3x$$

$$y = x^2 + 5x$$
Yes

$$x + y^2 = 9$$

Determine if a graph is a function.

To determine if an equation is a function, we need to us the Vertical Line Test.

The Vertical Line Test states:

A set of points in the xy-plane is the graph of a function if and only if every vertical line intersects the graph in at MOST one point.

These graphs pass the Vertical Line Test so they are FUNCTIONS.

Lesson 2.3: Graphs, Relations, and Functions

Lesson 2.3: Graphs, Relations, and Functions

Lesson 2.3: Graphs, Relations, and Functions

Lesson 2.3: Graphs, Relations, and Functions

We often denote functions as f, F, g, G, etc.

If f is a function, then for each number x in its domain, there is a corresponding value in the range - denoted as f(x). We call f(x) "the value of f at the number x". f(x) = y

For example:

We can rewrite y = 3x + 2 as f(x) = 3x + 2

Lesson 2.3: Graphs, Relations, and Functions

For a function
$$y = f(x)$$
:

x is called the independent variable.

y is called the dependent variable.

y is called the dependent variable because its value depends on the value for x.

$$W(c)=30c+50$$

 $c=indep.$
 $W=dep.$

Find the value for the function:

$$f(x) = x^2 + 5x$$

a.)
$$f(3) = (3)^{2}+5(3)$$
 b.) $f(-2) = -(0)^{2}+5(-2)$
 $f(3) = 9+15$
 $f(-2) = (-1)^{2}+5(-2)$
 $= 9+15$
 $= 9+15$
 $= 9+15$
 $= 9+15$
 $= 9+15$
 $= 9+15$
 $= 9+15$
 $= 9+15$
 $= 9+15$
 $= 9+15$
 $= 9+15$
 $= 9+15$
 $= 9+15$
 $= 9+15$
 $= 9+15$
 $= 9+15$

Find the value for the function:

$$f(x) = 4x + 7$$

$$f(x) = 4x + 7$$
a.)
$$f(x + 3) = 4(x+3) + 7$$

$$= 4x + 12 + 7$$

$$f(x+3) = 4x + 19$$

$$= 4x + 26$$

$$f(x) + f(x) = 4x + 26$$

Summary

- For each x in the domain there corresponds exactly one y in the range.
- f is a symbol that we use to denote the function. It represents the equation that we use to get from an x in the domain to f(x) in the range.
- If y = f(x), then x is called the independent variable, and y is called the dependent variable or the value of f at x.

Lesson 2.3: Graphs, Relations, and Functions

Find the value for the function:

$$f(x) = 4x + 7$$

a.)
$$f(x + 3)$$

b.)
$$f(x) + f(3)$$

By the end of the lesson, you should be able to:

- ~ Tell if a RELATION is a function.
 - *Remember that a relation is a
 - Mapping
 - Set of Coordinate Pairs
 - ~ Equation
 - ~ Graph
- ~ Find the value of a function
- ~ Graph a function

Can you?

Homework:

```
Pg. 165: 1, 2, 9, 11, 15-35 odds, 39, 43, 47, 51, 53, 67
(19 prob)
```