By the end of the lesson, you will be able to:

- Define the terms Polynomial and Monomial, and determine the degree of a monomial & polynomial.
- Simplify Polynomials by combining like terms.
- Evaluate Polynomial functions.
- Add, Subtract and Multiply Monomials, Polynomials and special functions.

Multiplying Special Products: Certain products end up following specific patterns every time. The following are special product formulas that make it easy to find a product quickly.

DIFFERENCE OF TWO SQUARES:

M)
$$(A - B)(A + B) = A^2 - B^2$$
$$(2x + 5)(2x - 5)$$

SQUARES OF BINOMIALS, or PERFECT SQUARE BINOMIALS:

$$(A+B)^2 = A^2 + 2AB + B^2$$
 and $(A-B)^2 = A^2 - 2AB + B^2$

N)
$$(n+8)^2$$
 O) $(7z-2)^2$

POLYNOMIAL FUNCTIONS: A function whose rule is a polynomial. (Example: $f(x) = 3x^2 - 2x^2 + 6x + 1$)

ADDING, SUBTRACTING, & MULTIPLYING POLYNOMIAL FUNCTIONS:

If f and g are functions, then

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

EXAMPLES: Let
$$f(x) = 2x^2 + x - 3$$
 and $g(x) = -x^2 - 2x + 1$

P)
$$(f+g)(x) =$$

Q)
$$(f - g)(x) =$$

* R)
$$(f+g)(2) =$$

*Note: When evaluating functions at a specific value of x, evaluate **each** function at that point FIRST, then combine.

S) Let
$$f(x) = 3x^2$$
 and $g(x) = x^2 - 2x + 1$

Find: $(f \cdot g)(x)$

APPLICATIONS: The Profit Function.

Profit is defined as total revenue minus total cost. The profit function of a company is shown as P(x) = R(x) - C(x)

Example: If a company sells sunglasses for \$20, the revenue function is R(x) = 20x. If the company's variable cost is \$8 per pair of sunglasses and fixed costs are \$1000 per week, the cost function is C(x) = 8x + 1000

a) Find the profit function P(x)

b) Determine and interpret P(750)

Rational Exponents

Fraction exponents, called rational exponents, are another way to represent roots. For rational exponents, the numerator represents the power, and the denominator represents the root.

$$a^{\frac{1}{m}} = \sqrt[m]{a}$$

$$5^{\frac{1}{3}} = \sqrt[3]{5}$$

$$a^{\frac{n}{m}} = \sqrt[m]{a^n} = (\sqrt[m]{a})^n$$

$$5^{\frac{2}{3}} = \sqrt[3]{5^2} = (\sqrt[3]{5})^2$$

Exponent Monster

Examples:

a.)
$$36^{\frac{1}{2}} =$$

b.)
$$64^{\frac{1}{3}} =$$

c.)
$$36^{\frac{3}{2}} =$$

$$4.) 27^{\frac{4}{3}} =$$

Exponent Monster

Examples:

e.)
$$9^{\frac{3}{2}} =$$

f.)
$$27^{\frac{2}{3}} =$$

$$9.)49^{-\frac{1}{2}} =$$

$$h.) \left(\frac{1}{8}\right)^{-\frac{1}{3}} =$$

<u>Homework:</u>

Pg. 374: 15, 21, 29, 31, 35, 43, 47, 51, 53, 57, 61, 65, 71, 75, 87, 101, 105

