By the end of the lesson, we will be able to:

- ~ Factor trinomials in the form $x^2 + bx + c$
- ~ Factor trinomials in the form $ax^2 + bx + c$
- ~ Factor trinomials using substitution.

Factoring is essentially "undistributing". We are trying to write a <u>second-degree</u> polynomial as the product of <u>2 first degree</u> binomials. There is a pattern that always appears when we're factoring.

If
$$x^2 + bx + c = (x + m)(x + n)$$
,
then $b = m + n$ and $c = m \cdot n$
 $= ac$
 $+ = b$

Box Method of Factoring:

Step 1: In the upper left box, put your first term, In the lower right box, put your last term.

Step 2: Multiply AxC and factor the product to find factors that add up to B. Put these factors (with an x attached) into the other

Step 3: Find the GCF of each row and each column. Keep the sign of the upper right and lower left boxes as part of the GCF.

two boxes. Order doesn't matter.

Step 4: Rewrite the GCF's of the rows in one set of parentheses, and the GCF's of the columns in one set of parentheses. This is your final factorization.

Ex 1: Factor

$$(y + 7)$$
 $(y + 7)$
 $(y + 7)$
 $(y + 4)$
 $(y + 7)$
 $(y +$

$$y^2 + 11y + 28$$
 $4 \cdot 3 = 28$

Factor by grouping

$$y^{2} + 11y + 28$$

$$y^{2} + 4y + 7y + 28$$

$$y(y+4) + 7(y+4)$$

$$y(y+4)(y+7)$$

$$y(y+4)(y+7)$$

THINK!

- ~If both b and c are positive, the factors of c must both be positive.
- ~If b is negative and c is positive, both factors of c must be negative.
- ~If both b and c are negative, you must have one positive and one negative factor of c.

Ex 2: Factor
$$2t^2 - 22t + 36$$

(remember GCF...) $2(t^2 - 11t + 18)$

$$\frac{(t-2)}{t^2-2t}$$

Ex 3: Factor
$$x^2 - 2xy + y^2$$

 $X^2 - 2xy + y^2$
 $X^2 - 1xy - 1xy + y^2$
 $X(x-y) - y(x-y)$
 $(X-y)(x-y)$

IDENTIFYING "PRIME" TRINOMIALS:

A "prime" trinomial is one that cannot be factored because there are no integer factors of c that add to b.

There are no factors of 10 that sum to 5, so ... It's Prime!

FACTORING WHERE THERE ARE GCF'S:

The first rule of factoring is always LOOK FOR A GCF!!!!

FACTORING TRINOMIALS WITH A LEADING COEFFICIENT: $ax^2 + bx + c$, where $a \neq 1$

There are two methods of factoring trinomials with a leading coefficient:

- ~ Factoring by grouping
- ~ Factoring by Trial and Error (also called "Guess and Check").

FACTORING BY GROUPING:

- **Step 1**: Find the value of $a \cdot c$
- Step 2: Find the pair of integers whose product equals ac, and whose sum equals b. Call these integers m and n, where mn = ac and m + n = b
- Step 3: Rewrite the expression as:

$$ax^2 + bx + c = ax^2 + mx + nx + c$$

Step 4: Factor the new expression by grouping.

Step 5: CHECK YOUR ANSWER!

$$\frac{-8}{-8} \cdot \underline{3} = -24$$

$$(2x+1)(3x-4)$$

Example: Factor
$$6x^2 - 5x - 4$$

Example: Factor $-15x^2 + 23x - 4$

$$\frac{20}{20} \cdot \frac{3}{3} = 60$$

$$\frac{20}{15} \times \frac{3}{4} = 23$$

$$-15 \times \frac{3}{4} + 23 \times -4$$

$$-15 \times \frac{3}{4} + 20 \times \frac{3}{4} + 3 \times -4$$

$$-5 \times (3 \times -4) + 1(3 \times -4)$$

$$(3 \times -4) (-5 \times +1)$$

$$(3 \times -4) (-1) (5 \times -1)$$

$$-1(3 \times -4) (5 \times -1)$$

More correct way

$$-1 (15x^{2}-23x+4)$$

$$-\frac{20}{-20} \cdot -3 = 60$$

$$-\frac{20}{-20} + 2 = -23$$

$$15x^{2}-20x, -3x+4$$

$$-5x (3x-4) -1 (3x-4)$$

$$-1 (3x-4) (5x-1)$$

FACTORING BY SUBSTITUTION:

Sometimes our trinomials have variables with extra large exponents, or even use binomials in place of variables. To factor these, we can use substitution.

Example: Factor $2n^4 - 7n^2 - 15$ Substitute: $x = n^2$

$$2x^2 - 7x - 15 = \frac{10}{10} + \frac{3}{3} = -30$$

$$2x(x-5)+3(x-5)$$

$$(x-5)(2x+3)$$

$$(n^2-5)(2n^2+3)$$

Example: Factor $2(x + 1)^2 + 3(x + 1) - 35$

Substitute: z = (x + 1)

By the end of the lesson, we will be able to:

- ~ Factor trinomials in the form $x^2 + bx + c$
- ~ Factor trinomials in the form $ax^2 + bx + c$
- ~ Factor trinomials using substitution.

Can you?

Assignment:

Page 407: #'s 9, 11, 15, 21, 25, 29, 35, 39, 43, 47, 51, 55, 57, 59, 63, 65, 67, 79, 83

AND

Page 442: #'s 65, 69, 73, 75

(23 problems)