Objectives: Factor polynomials completely.

We have learned several ways to factor in this unit, today our goal is to learn how to recognize and apply the correct factoring patterns.

STEPS FOR FACTORING (no matter what kind of polynomial it is.)

Step 1: Factor out the GCF, if there is one.

Step 2: Count the number of terms.

Step 3: A) 2 terms

Is it a difference of squares?

$$A^2 - B^2 = (A + B)(A - B)$$

Is it a difference of two cubes?

$$A^3 - B^3 = (A - B)(A^2 + AB + B^2)$$

Is it a sum of two cubes?

$$A^3 + B^3 = (A + B)(A^2 - AB + B^2)$$

Step 3: cont.

B) 3 terms

Is it a perfect square trinomial?

$$A^{2} + 2AB + B^{2} = (A + B)^{2}$$
or
 $A^{2} - 2AB + B^{2} = (A - B)^{2}$

Is the coefficient of the x² term 1?

$$x^{2} + bx + c = (x + m)(x + n)$$

$$where m \cdot n = c, m + n = b$$

Is the coefficient of the x² term different than a 1?
 ➤ Then use factoring by grouping.

C) 4 terms

 Use factoring by grouping. (Remember: sometimes we can "group" into groups other than pairs, such as perfect square trinomials.)

Step 4: Check your work!

Example 1: Factor $18x^2 + 3x - 3$

Example 2: Factor $81z^2 - 49y^2$

Example 3: Factor $100k^2 + 240k + 144$

Example 4: Factor $125m^9 + 8n^6$

Example 5: Factor $-2a^2b + 8ab + 42b$

Example 6: Factor $6x^3 - 9x^2 - 6x + 9$

Example 7: Factor $x^2 - 4xy + 4y^2 - 9$

Objectives: Factor polynomials completely.

We have learned several ways to factor in this unit, today our goal is to learn how to recognize and apply the correct factoring patterns.

Can you?

Homework:

Pg. 421: #'s 3,5,7,9,11,17,19,23,25,33,35,37,39,41,47,49,51

AND

Pg. 442-443: #'s 72, 77, 83, 85, 92, 99, 102, 107

