### Objectives:

- Solve polynomial equations using the Zero-Product Property.
- Solve equations involving polynomial functions.
- Model and solve problems involving polynomials.

# SOLVING POLYNOMIAL EQUATIONS USING THE ZERO-PRODUCT PROPERTY

### **Zero-Product Property:**

If the product of two (or more) numbers is zero, then at least one of the numbers is 0.

If ab = 0, then a = 0or b = 0, or both a and b equal 0.

This property helps us solve polynomial equations, because when we factor, we make a *product* of factors, and if the product of factors equals 0, then one or more factors must equal 0.

Example 1: Solve by using the Zero Property

$$(x-4)(3x+2)=0$$

#### STEPS TO SOLVING POLYNOMIAL EQUATIONS BY FACTORING:

**Step 1:** Write the equation in standard form -- all terms are on one side of the equation, and the equation is equal to zero.  $ax^2 + bx + c = 0$ 

**Step 2:** Completely factor the polynomial expression on the left side of the equation.

Step 3: Set each factor found in Step 2 equal to zero (apply the zero-product property and split them up.)

**Step 4:** Solve each new equation for the variable.

**Step 5:** CHECK your answers by substituting each solution into the *original* equation.

Example 2: Solve by using the Zero Property

$$2x^2 + x = 6$$

## Example 3: Solve by using the Zero Property BE CAUTIOUS! Don't set each factor = 6x!

$$(2x + 5)(x - 3) = 6x$$

Example 4: Solve by using the Zero Property

$$n^3 + 4n^2 - 9n = 36$$

# SOLVING EQUATIONS CONTAINING POLYNOMIAL FUNCTIONS:

**Example 5:** Suppose  $f(x) = x^2 - 4x + 6$ 

A) find the values of such that f(x) = 11

**Example 5:** Suppose 
$$f(x) = x^2 - 4x + 6$$

B) What points are on the graph of **f**?

**Definition:** A zero of a function f(x) is any value of x such that f(x) = 0.

> In addition, if x is a zero of a function, it is also an x-intercept of that function (the point on the x-axis where the graph crosses it).

**Example 6:** Find the zeros of  $f(x) = 3x^2 - 8x - 35$ 

What are the x-intercepts of the graph?

# MODELING & SOLVING PROBLEMS INVOLVING POLYNOMIALS:

**Example 7:** The width of a rectangle is 7 feet less than its length. If the area of the rectangle is 78 square feet, what are the dimensions of the rectangle? If the width (w) is 7 feet less than the length, we can say that  $\omega = \ell - 7$ .

### Objectives:

- Solve polynomial equations using the Zero-Product Property.
- Solve equations involving polynomial functions.
- Model and solve problems involving polynomials.

### Homework:

**Pg. 432:** # 9, 11, 13, 17, 19, 21, 33, 37, 43, 47, 49, 51, 55, 59, 61, 73, 77, 83, 85

<u>AND</u>

Pg. 444: # 117-129 odds