Objectives:

- Solve polynomial equations using the Zero-Product Property.
- Solve equations involving polynomial functions.
- Model and solve problems involving polynomials.

SOLVING POLYNOMIAL EQUATIONS USING THE ZERO-PRODUCT PROPERTY

Zero-Product Property:

If the product of two (or more) numbers is zero, then at least one of the numbers is 0.

If ab = 0, then a = 0or b = 0, or both a and b equal 0.

This property helps us solve polynomial equations, because when we factor, we make a *product* of factors, and if the product of factors equals 0, then one or more factors must equal 0.

Example 1: Solve by using the Zero Property

$$(x-4)(3x+2)=0$$

STEPS TO SOLVING POLYNOMIAL EQUATIONS BY FACTORING:

Step 1: Write the equation in standard form -- all terms are on one side of the equation, and the equation is equal to zero. $ax^2 + bx + c = 0$

Step 2: Completely <u>factor</u> the polynomial expression on the left side of the equation.

Step 3: Set each factor found in Step 2 equal to zero (apply the zero-product property and split them up.)

Step 4: Solve each new equation for the variable.

Step 5: CHECK your answers by substituting each solution into the *original* equation.

Example 2: Solve by using the Zero Property

$$2x^{2} + x = 6$$

$$2x^{2} + 4x - 6 = 0$$

$$2x^{2} + 4x - 3x - 6 = 0$$

$$2x(x+2) - 3(x+2) = 0$$

$$(x+2)(2x-3) = 0$$

$$x+2=0 \qquad 2x-3=0$$

$$X=-2 \qquad x=\frac{3}{2}$$

Example 3: Solve by using the Zero Property

BE CAUTIOUS! Don't set each factor = 6x!

$$(2x + 5)(x - 3) = 6x$$

$$-4x - 4ex$$

$$(2x + 5)(x - 3) - 6x = 0$$

$$2x^{2} - 6x + 5x - 15 - 6x = 0$$

$$2x^{2} - 7x - 15 = 0$$

$$2x^{2} - 10x + 3x - 15 = 0$$

$$2x(x - 5) + 3(x - 5) = 0$$

$$(x - 5)(2x + 3) = 0$$

$$\frac{-10}{-10} + 3 = -30$$

$$\frac{-10}{-10} + 3 = -7$$

$$X-5=0$$
 $2x+3=0$
 $X=5$ $X=-\frac{3}{2}$

Example 4: Solve by using the Zero Property

$$n^{3} + 4n^{2} - 9n = 36$$

$$n^{3} + 4n^{2} - 9n - 36 = 0$$

$$n^{2}(n+4) - 9(n+4) = 0$$

$$(n+4)(n^{2}-9) = 0$$

$$(n+4)(n+3)(n-3) = 0$$

$$n+4 = 0 \quad n+3 = 0 \quad n-3 = 0$$

$$n^{3} + 4n^{2} - 9n = 36$$

$$(n+4) - 9n = 0$$

$$(n+4) -$$

SOLVING EQUATIONS CONTAINING POLYNOMIAL FUNCTIONS:

Example 5: Suppose $f(x) = x^2 - 4x + 6$

A) find the values of x such that f(x) = 11

Example 5: Suppose
$$f(x) = x^2 - 4x + 6$$

B) What points are on the graph of **f**?

Definition: A zero of a function f(x) is any value of x such that f(x) = 0.

In addition, if x is a zero of a function, it is also an x-intercept of that function (the point on the x-axis where the graph crosses it).

Example 6: Find the zeros of $f(x) = 3x^2 - 8x - 35$

What are the x-intercepts of the graph?

$$0 = 3x^{2} - 8x - 35$$

$$0 = 3x^{2} - 15x + 7x - 35$$

$$0 = 3x(x - 5) + 7(x - 5)$$

$$0 = (x - 5)(3x + 7)$$

$$X-5=0$$
 $3X+7=0$
 $X=5$ $X=-\frac{7}{3}$

MODELING & SOLVING PROBLEMS INVOLVING POLYNOMIALS:

Example 7: The width of a rectangle is 7 feet less than its length. If the area of the rectangle is 78 square feet, what are the dimensions of the rectangle?

If the width (w) is 7 feet less than the length, we can say that w = L - I

doesn't make sense to have length of -6

Objectives:

- Solve polynomial equations using the Zero-Product Property.
- Solve equations involving polynomial functions.
- Model and solve problems involving polynomials.

Homework:

Pg. 432: # 9, 11, 13, 17, 19, 21, 33, 37, 43, 47, 49, 51, 55, 59, 61, 73, 77, 83, 85, ¶ | **AND**

Pg. 444: # 117-129 odds