By the end of the lesson, we will be able to:

- Determine the domain of rational expressions and functions
- Simplify, multiply, and divide rational expressions and functions

A <u>RATIONAL EXPRESSION</u> is the quotient of two polynomials.

Examples:

$$\frac{x-5}{2x+1}$$

$$\frac{x^2 - 7x - 18}{x^2 - 4}$$

$$\frac{1}{x-3}$$

$$\frac{2a^2 + 5ab + 2b^2}{a^2 - 6ab + 8b^2}$$

A RATIONAL FUNCTION

is a function of the form $R(x) = \frac{p(x)}{q(x)}$ where p(x) and q(x) are polynomials and q is not a zero polynomial.

The domain consists of all real numbers except those for which the denominator q(x) is O.

Remember?

The Domain of an expression is all values of x that result in a defined value for y. This means that if we have a fraction, the denominator can never equal 0!

To find the domain of a rational expression, it is easier to determine what values x can't be.

Examples: Determine the domain for each of the following rational expressions or functions.

$$\frac{-3z}{z+5}$$

b.)
$$\frac{n^2-2n-8}{n^2-n-12}$$

Examples: Determine the domain for each of the following rational expressions or functions.

c.)
$$R(x) = \frac{x-3}{x^2-2x-8}$$

SIMPLIFYING RATIONAL EXPRESSIONS/FUNCTIONS:

We simplify rational expressions and functions by dividing out any common factors.

NOTE!!! "Factors" means that we are dealing with a multiplication problem! If two terms are connected by a + or -, you CAN NOT reduce just one of the terms. You can only reduce sets of terms if the whole set is identical in both the numerator and the denominator.

SIMPLIFYING RATIONAL EXPRESSIONS/FUNCTIONS:

Examples: Simplify

a.)
$$\frac{x^2 + x - 6}{2x^2 - 5x + 2}$$

b.)
$$\frac{y^3 + 27}{2y^2 + 6y}$$

MULTIPLYING RATIONAL EXPRESSIONS/FUNCTIONS:

- Step 1: Completely factor each polynomial in the numerator and the denominator.
- Step 2: Divide out common factors in the numerators and denominator.
- Step 3: Multiply the remaining terms in the numerator together, and the remaining terms in the denominator together.

Multiply Examples:

a.)
$$\frac{n^2-9}{n^2+5n+6} \cdot \frac{n+2}{6-2n}$$

Multiply Examples:

b.)
$$\frac{a^2-b^2}{10a^2-10ab} \cdot \frac{10a+5b}{2a^2+3ab+b^2}$$

DIVIDING RATIONAL EXPRESSIONS or FUNCTIONS:

To divide rational expressions, follow the rules for dividing regular fractions: Invert the second (or bottom) fraction, then multiply.

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \cdot \frac{d}{c}$$

DIVIDING RATIONAL EXPRESSIONS

Examples:

a.)
$$\frac{\frac{45z^4}{7y}}{\frac{5z}{21y^2}}$$

DIVIDING RATIONAL EXPRESSIONS

Examples:

b.)
$$\frac{\frac{p^3 - 8}{5p^2 + 15p}}{\frac{p^2 - 4}{p^2 + 3p}}$$

WORKING WITH FUNCTIONS:

Sometimes we are given two or more functions and told to combine and simplify them.

$$f(x) = \frac{x^2 - 9}{2x^2 - 8x} \qquad g(x) = \frac{x - 4}{x^2 + 4x + 3} \qquad h(x) = \frac{x^2 + 6x + 9}{x^2 - 5x}$$

Example: find the given function and state the domain of each function.

$$R(x) = f(x) \cdot g(x)$$

$$f(x) = \frac{x^2 - 9}{2x^2 - 8x} \qquad g(x) = \frac{x - 4}{x^2 + 4x + 3} \qquad h(x) = \frac{x^2 + 6x + 9}{x^2 - 5x}$$

Example: find the given function and state the domain of each function.

$$A(x) = \frac{f(x)}{h(x)}$$

By the end of the lesson, we will be able to:

- Determine the domain of rational expressions and functions
- Simplify, multiply, and divide rational expressions and functions

Can you?

Homework:

Page 463: # 9, 11, 13, 17, 19, 23, 25, 29, 33, 35, 39, 43, 47, 49, 51, 55, 59, 63, 67, 69, 81, 83

(22 problems)