Objectives:

- Solve equations containing rational expressions.
- Solve equations containing rational functions.

Solving a Rational Equation

- Step 1: Find the domain of the variable in the equation.
 (Look at every term!)
- Step 2: Find the LCD of all of the denominators.
- Step 3: Multiply every term in the equation (on both sides) by the LCD. (This should get rid of all of the denominators.)
- Step 4: Solve the resulting equation.
- Step 5: Verify your solution.

Example 1: Solve.
$$\frac{2}{2x-5} = \frac{6}{2x-3}$$

Example 1: Solve.
$$\frac{2}{2x-5} = \frac{6}{2x-3}$$

Step 1: Find the domain.
$$\left\{x \middle| x \neq \frac{5}{2}, \frac{3}{2}\right\}$$

Step 2: Find the LCD. $LCD = (2x - 5)(2x - 3)$
Step 3: Multiply every term by the LCD. $\frac{2(2x - 5)(2x - 3)}{(2x - 5)} = \frac{6(2x - 5)(2x - 3)}{(2x - 3)}$
Step 4: Solve. $2(2x - 3) = 6(2x - 5)$
 $4x - 6 = 12x - 30$ (combine constants & x's)
 $-4x + 30 - 4x + 30$
 $24 = 8x$ (divide by 8)
 $x = 3$

Step 5: CHECK IT!

Example 2: Solve.

$$\frac{4}{3b} + \frac{1}{6b} = \frac{7}{2b} + \frac{1}{3}$$

Example 2: Solve.

$$\frac{4}{3b} + \frac{1}{6b} = \frac{7}{2b} + \frac{1}{3}$$

Step 1: Domain = $\{b | b \neq 0\}$

Step 2: LCD: = 6b

Step 3: Multiply through. $\frac{4(6b)}{3b} + \frac{1(6b)}{6b} = \frac{7(6b)}{2b} + \frac{1(6b)}{3}$

Step 4: Solve. $4(2) + 1 = 7(3) + 1(2b) \rightarrow 9 = 21 + 2b$

 \rightarrow -12 = 2b \rightarrow **b** = -6

Step 5: CHECK IT!

Example 3: Solve.

$$\frac{x^2 + 8x + 6}{x^2 + 3x - 4} = \frac{3}{x - 1} - \frac{2}{x + 4}$$

Example 3: Solve.

$$\frac{x^2 + 8x + 6}{x^2 + 3x - 4} = \frac{3}{x - 1} - \frac{2}{x + 4}$$

Step 2: LCD =
$$(x-1)(x+4)$$

Step 3: $(x+4)(x-1)\frac{x^2+8x+6}{(x+4)(x-1)} = \frac{3(x+4)(x-1)}{(x-1)} - \frac{2(x-1)(x+4)}{(x+4)}$
Step 4: $x^2+8x+6=(3x+12)-(2x-2) \rightarrow x^2+8x+6=x+14$
 $\rightarrow x^2+7x-8=0 \rightarrow (x+8)(x-1)=0$
 $x=-8,1$ HOWEVER! Our domain $x = x = 1$, so that is what we call an "Extraneous Solution". Therefore our answer should be: $x=-8$

Step 1: Domain: $x^2 + 3x - 4 = (x + 4)(x - 1)$ so $Domain = \{x | x \neq -4.1\}$

Step 5: CHECKIT!

Example 4: Solve.

$$\frac{-15}{x^2 + x - 6} + \frac{3}{x - 2} = \frac{2}{x + 3}$$

Example 4: Solve.

$$\frac{-15}{x^2 + x - 6} + \frac{3}{x - 2} = \frac{2}{x + 3}$$

Step 1:
$$x^2 + x - 6 = (x + 3)(x - 2)$$
 so $\{x | x \neq -3, 2\}$
Step 2: $LCD = (x + 3)(x - 2)$
Step 3: $\frac{-15(x+3)(x-2)}{(x+3)(x-2)} + \frac{3(x+3)(x-2)}{(x-2)} = \frac{2(x+3)(x-2)}{(x+3)}$
Step 4: $-15 + 3(x+3) = 2(x-2) \rightarrow -15 + 3x + 9 = 2x - 4$
 $3x - 6 = 2x - 4 \rightarrow x = 2$

Our domain $\underline{says} x \neq 2$, so our solution can't work. Therefore our answer is the empty set or no solution. {} $\mathbf{or} \ \emptyset$

Example 5: Solve.

$$\frac{3x}{x+7} - \frac{3}{x-2} = -\frac{5x+17}{x^2+5x-14}$$

Example 5: Solve.

$$\frac{3x}{x+7} - \frac{3}{x-2} = -\frac{5x+17}{x^2+5x-14}$$

Step 1: Domain:
$$\{x | x \neq -7, 2\}$$

Step 2: $LCD = (x + 7)(x - 2)$
Step 3: $\frac{3x(x+7)(x-2)}{(x+7)} - \frac{3(x+7)(x-2)}{(x-2)} = \frac{-(5x+17)(x+7)(x-2)}{(x+7)(x-2)}$
Step 4: $3x(x-2) - 3(x+7) = -5x - 17 \rightarrow 3x^2 - 6x - 3x - 21 = -5x - 17 \rightarrow 3x^2 - 9x - 21 = -5x - 17 \rightarrow 3x^2 - 4x - 4 = 0 \rightarrow (3x+2)(x-2) = 0 \rightarrow x = \frac{-2}{3} \quad x = 2 \quad but \ x \ can't \ equal \ 2.so$

$$x = -\frac{2}{3}$$
Step 5: CHECK IT!

Example 6: For the function $f(x) = x + \frac{3}{x}$ Solve for f(x) = 4.

What points are on the graph when f(x)=y=4?

Example 6: For the function $f(x) = x + \frac{3}{x}$ Solve for f(x) = 4.

For the $\underbrace{\mathrm{function}}_{x} f(x) = x + \frac{3}{x}$, solve f(x) = 4. What point(s) are on the graph of f at f(x) = y = 4?

 $4 = x + \frac{3}{x}$ LCD is x, so multiply everything by x.

$$4(x) = x(x) + \frac{3}{x}(x) \quad \rightarrow \quad 4x = x^2 + 3 \quad \rightarrow \quad 0 = x^2 - 4x + 3 \quad \rightarrow 0 = (x - 3)(x - 1) \quad \rightarrow \quad x = 3, x = 1$$

Since f(3) = 4, and f(1) = 4, there are points on the graph at (3,4) and (1,4)

Objectives:

- Solve equations containing rational expressions.
- Solve equations containing rational functions.

Can you?

Homework:

```
Pg. 494: #7, 9, 11, 15, 19, 23, 27, 29, 31, 33, 37, 41, 55, 57, 63
(15 problems)
```