Objectives:

- Use the Laws of Exponents to simplify expressions that contain rational exponents.
- Use the Laws of Exponents to simplify radical expressions.
- Factor expressions containing rational exponents.

Lesson 7.2: Simplifying Expressions using Laws of Exponents

The Laws of Exponents that we learned before when we worked with exponents that were integers, will also work for rational exponents. Here is a quick overview:

LAWS OF EXPONENTS:

Assuming that a and b are real numbers, and assuming the expression is defined (there aren't any denominators equal to zero)...

Zero Exponent Rule:

$$a^{0} = 1$$

if
$$a \neq 0$$

$$a^{-\frac{m}{n}} = \frac{1}{\frac{m}{a^{\frac{m}{n}}}}$$

if
$$a \neq 0$$

Lesson 7.2: Simplifying Expressions using Laws of Exponents

Product Rule:

$$a^{\frac{m}{n}} \cdot a^{\frac{r}{s}} = a^{\left(\frac{m}{n} + \frac{r}{s}\right)}$$

Quotient Rule:

$$\frac{a^{m/n}}{a^{r/s}} = a^{\left(\frac{m}{n} - \frac{r}{s}\right)} = \frac{1}{a^{\left(\frac{r}{s} - \frac{m}{n}\right)}} \text{ if } a \neq 0$$

Power Rule:

$$\left(a^{\frac{m}{n}}\right)^{\frac{r}{s}} = a^{\frac{m}{n} \cdot \frac{r}{s}}$$

Product to Power Rule:

$$(a \cdot b)^{\frac{m}{n}} = a^{\frac{m}{n}} \cdot b^{\frac{m}{n}}$$

Quotient to Power Rule:

$$\left(\frac{a}{b}\right)^{\frac{m}{n}} = \frac{a^{\frac{m}{n}}}{\frac{m}{n}} \quad \text{if } b \neq 0$$

Quotient to a Negative Power Rule:

$$\left(\frac{a}{b}\right)^{-\frac{m}{n}} = \left(\frac{b}{a}\right)^{\frac{m}{n}}$$

if
$$a \neq 0$$
, $b \neq 0$

"To Simplify" means the following :

- · All exponents are positive.
- Each base occurs only once (we combine all x's, y's, numerical coefficients, etc.).
- There are no parentheses left in the expression.
- There are no powers written to powers left in the expression.

A)
$$16^{2/3} \cdot 16^{5/6}$$
 B) $\frac{4^{2/3}}{4^{-5/6}}$

C)
$$\left(4^{3/2}\right)^{5/3}$$

$$D)(a^{-3/2}b^{1/4})^8$$

E)
$$(x^{-4/3}y^{-2})(x^2y^{1/2})^{4/3}$$

F)
$$\frac{(2x^{-1}y^{2/5})^5}{x^2y^2}$$

EXAMPLE: Use Rational Exponents to simplify the radicals.

G)
$$\sqrt[6]{9^3}$$

H)
$$\sqrt[3]{27a^3b^9}$$

EXAMPLE: Use Rational Exponents to simplify the radicals.

I)
$$\frac{\sqrt[4]{x^3}}{\sqrt{x}}$$
 J) $\sqrt[3]{n}$

Objectives:

- Use the Laws of Exponents to simplify expressions that contain rational exponents.
- Use the Laws of Exponents to simplify radical expressions.
- Factor expressions containing rational exponents.

Homework:

Page 546: # 3, 5, 9, 13, 17, 21, 25, 29, 31, 27, 41, 45, 65, 69, 73 (15 problems)