Objectives:

- · Add and Subtract Rational Expressions.
- · Multiply Radical Expressions.

Definition:

Two radicals are called "like radicals" if each radical has the same index and the same radicand (term inside of the radical).

<u>Example:</u>

 $\sqrt[4]{x-2}$ and $5\sqrt[4]{x-2}$ are "like radicals" with different coefficients.

To Add or Subtract Radical Expressions:

Step 1: Simplify all of your radicals (pull out perfect squares, or cubes, etc.), if necessary.

Step 2: Add or subtract the <u>COEFFICIENTS ONLY</u> of the like radicals. The values inside the radicals will not change. This is just like adding or subtracting polynomials with like terms.

a.)
$$3\sqrt{5x} + 7\sqrt{5x}$$

b.)
$$5\sqrt[3]{11} - 8\sqrt[3]{11} + \sqrt[3]{11}$$

c.)
$$3\sqrt{20} + 8\sqrt{45}$$

d.)
$$6x\sqrt{12x} - 5\sqrt{3x^3}$$

e.)
$$2\sqrt{11} + 8\sqrt{6}$$

f.)
$$\sqrt[3]{-54x^4} + 5x\sqrt[3]{2x} + x\sqrt[3]{16x}$$

g.)
$$2\sqrt{a^2b} - 5a\sqrt[6]{b^3}$$

Multiplying Radical Expressions:

- Key Idea: You <u>must</u> have the same index on the radicals in order to combine the radicands!
- Multiply outside coefficients, and multiply radicands (outsides stay outside, insides stay inside).
- When multiplying radical expressions, we use the Distributive Property.

h.)
$$\sqrt{6}(3-2\sqrt{6})$$

i.)
$$(8-3\sqrt{2})(5+7\sqrt{2})$$

j.)
$$(5\sqrt{7} + \sqrt{2})^2$$

$$(8 + \sqrt{5})(8 - \sqrt{5})$$

Homework:

```
Pg. 564: #7-33 odds, 37, 41, 43, 47, 51, 55, 57, 63, 65, 69, 71, 75, 83, 89, 91, 95
(30 problems)
```