Objectives:

- Solve logarithmic equations.
- Solve exponential equations.
- Solve equations involving exponential models.

Solving Logarithmic Equations:

There are two methods for solving logarithmic equations:

- 1. Use the One-to-One Property of Logarithms:
 - If $\log_a M = \log_a N$, then M = N
- 2. If an equation contains more than one logarithmic term on one side, use the properties of logarithms to rewrite the equation as a single logarithm. Solve by changing to exponential form, or by using the One-to-One Property.

A)
$$2 \log_7 x^2 = \log_7 16$$

 $\log_7 (x^2) = \log_7 (16)$
 $x^2 = 16$
 $\sqrt{x^2} = \pm \sqrt{16}$
 $x = \pm 4$
 $x = 4$

B)
$$\log_4(x+6) + \log_4 x = 2$$

 $\log_4((x+6) + \log_4 x = 2$
 $\log_4((x+6) + \log_4 x = 2)$
 $\log_4((x+6) + \log_4 x = 2$
 $\log_4((x+6) + \log_4 x = 2)$
 $\log_4((x+6) + \log_4 x = 2)$

Solving Exponential Equations:

We already talked about solving by common bases, but if you can't rewrite the terms with common bases, you will have to solve using logarithms.

Step 1: Isolate the exponential expression.

Step 2: Rewrite the expression in logarithmic form

(remember that $x = a^y \leftrightarrow \log_a x = y$)

Step 3: Solve and verify your solution.

C)
$$2^x = 7$$

$$\log_2(7) = \times$$
Use change of base
$$\frac{\log(7)}{\log(2)} = \times$$

X = 2.807

D)
$$\frac{2e^{x+5}}{2} = \frac{5}{2}$$
 $e^{x+5} = \frac{5}{2}$
 $\log e(\frac{5}{2}) = x+5$
 $\ln(\frac{5}{2}) = x+5$
 $\ln(\frac{5}{2}) - 5 = x$
 $\ln(\frac{5}{2}) - 5 = x$
 $\ln(\frac{5}{2}) - 5 = x$

Solving Equations Involving Exponential Models:

We've already *evaluated* exponential models at given values, now we will *solve* the equations using the methods we just learned.

Lesson 9.5 - Exponential & Logarithmic Equations

- E) The radioactive half-life for an element measures its rate of decay. The half-life of Plutonium-239 is 24,360 years. The amount A (in grams) of Plutonium-239 after t years is given by the formula $A(t) = \mathbf{1} \cdot \left(\frac{1}{2}\right)^{t/24,360}$ Suppose we begin with a 1-gram sample.
 - a) How long will it take before 0.6 grams of the

$$t = 24360 \cdot \log_{(\frac{1}{2})}(.6)$$

 $t = 24360 \cdot \frac{\log(.6)}{\log(\frac{1}{2})}$ (change of base)
 $\log(\frac{1}{2})$
 $t = 17,952.482$ yrs

F) Suppose you deposit \$2500 into an IRA today. If the deposit earns 5% interest compounded quarterly, how long will it be before the account is worth

a) \$4,000?
$$\frac{4000}{2500} = \frac{2500(1 + \frac{-05}{4})^{4+}}{2500}$$

$$1.6 = (1.0125)^{4+}$$

$$\frac{\log_{1.0125}(1.6)}{4} = \frac{4t}{4}$$

$$\frac{1}{4} \cdot \frac{\log(1.6)}{\log(1.0125)} = \pm$$

(hange of base

F) Suppose you deposit \$2500 into an IRA today. If the deposit earns 5% interest compounded quarterly, how long will it be before the account is worth

b) \$5,000?

Objectives:

- Solve logarithmic equations.
- Solve exponential equations.
- Solve equations involving exponential models.

Can you?

Homework:

```
Pg. 760: #7,13, 15, 23, 25, 33, 41, 45, 47, 51, 55, 57, 59, 61, 65 (17 problems)
```