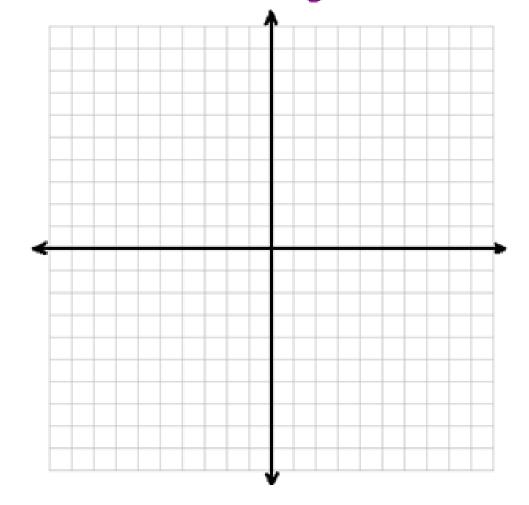
By the end of the lesson, you will be able to:

~ Solve Linear Programming Story Problems

~Review~

Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the maximum and minimum values of the given function for this region.


$$x - 3y \le 0$$

$$x - 3y \ge -15$$

$$4x + 3y \ge 15$$

$$x \le 6$$

$$f(x, y) = 5x + 2y$$

~Review~

$$x - 3y \le 0$$
 $x - 3y \ge -15$ $4x + 3y \ge 15$ $x \le 6$

~Review~

Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the maximum and minimum values of the given function for this region.

$$x - 3y \le 0$$

$$x - 3y \ge -15$$

$$4x + 3y \ge 15$$

$$x \le 6$$

f(x,y) = 5x + 2y

(X,Y)	5X+2Y	F(X,Y)

Linear Programming Story Problems Example 1:

Rosalyn works no more than 20 hours a week during the school year. She is paid \$10 an hour for tutoring geometry students and \$7 an hour for delivering pizzas for Pizza King. She wants to spend at least 3 hours but no more than 8 hours a week tutoring. Find Rosalyn's maximum earnings.

1st- define our variables:

x = number of hours tutoring

y = number of hours delivering

Example 1 continued:

Rosalyn works no more than 20 hours a week during the school year. She is paid \$10 an hour for tutoring geometry students and \$7 an hour for delivering pizzas for Pizza King. She wants to spend at least 3 hours but no more than 8 hours a week tutoring. Find Rosalyn's maximum earnings.

2nd-set up the constraints (inequalities)

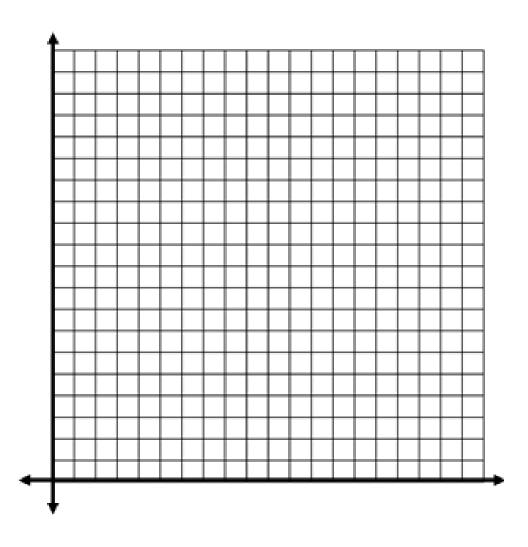
for total hours worked:

for hours tutoring:

for hours delivering:

3rd-write an equation for her weekly profit and label it f(x,y)

Example 1 continued:


4th-graph all constraints (inequalities)

$$x + y \le 20$$

$$x \ge 3$$
 $x \le 8$

$$y \ge 0$$
 $y \le 20$

5th- identify vertices of the feasible region.

- Find X and Y int so you can get the correct Calculator Window.
- Also, solve for y so you can enter the equation in the calculator to graph and find vertices.

Example 1 continued:

6th - find max of Rosalyn's weekly earnings.

(X,Y)	10X+7Y	F(X,Y)

Linear Programming Story Problems Example 2:

The Northern Wisconsin Paper Mill can make notebook paper or newsprint. The mill can produce at most 200 units of paper a day. At least 10 units of notebook paper and 80 units of newspaper are required daily by regular customers. If the profit on a unit of notebook paper is \$500 and the profit on a unit of newsprint is \$350, how many units of each paper should the manager have the mill produce each day to maximize profits?

1st- define our variables:

x =

y =

Example 2 continued:

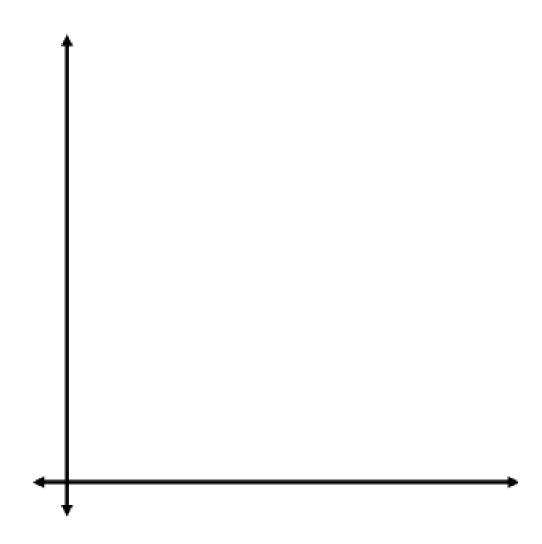
The Northern Wisconsin Paper Mill can make notebook paper or newsprint. The mill can produce at most 200 units of paper a day. At least 10 units of notebook paper and 80 units of newspaper are required daily by regular customers. If the profit on a unit of notebook paper is \$500 and the profit on a unit of newsprint is \$350, how many units of each paper should the manager have the mill produce each day to maximize profits?

2nd- set up the constraints (inequalities)

For total amount of paper:

For units of Notebook paper:

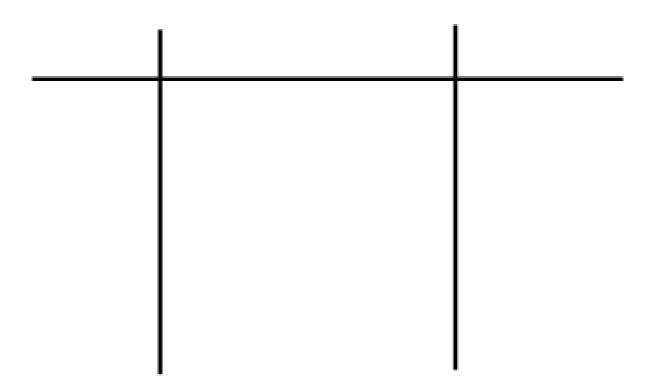
For units of newspaper:


3rd- write an equation for the mill's daily profit and label it f(x,y)

Lesson 14: Linear programming story problems (3.6)

Example 2 continued:

4th-graph all constraints (inequalities)


5th- identify vertices of the feasible region.

- Find X and Y int so you can get the correct Calculator Window.
- Also, solve for y so you can enter the equation in the calculator to graph and find vertices.

Example 2 continued:

6th - find the amount of each paper to produce to maximize profit.

Linear Programming Story Problems <u>Example 3:</u>

As a receptionist for a veterinarian, one of Dolores Alvarez's tasks is to schedule appointments. She allots 20 minutes for a routine office visit and 40 minutes for a surgery. The veterinarian cannot do more than 6 surgeries per day. The office has 7 hours available for appointments. If an office visit costs \$55 and most surgeries cost \$125, find a combination of office visits and surgeries that will maximize the income the veterinarian practice receives per day.

1st- define our variables:

x =

y =

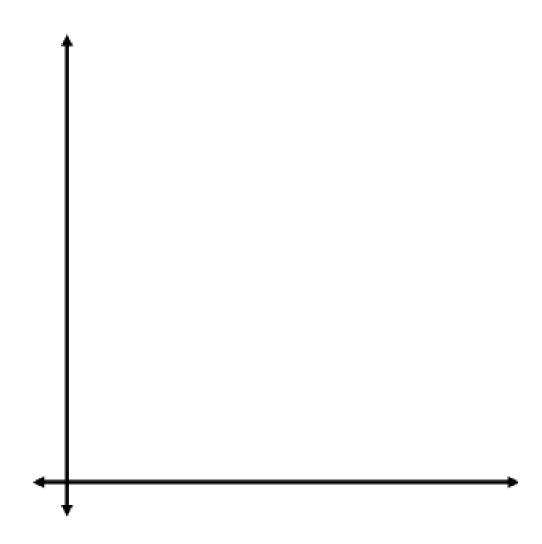
Example 3 continued:

As a receptionist for a veterinarian, one of Dolores Alvarez's tasks is to schedule appointments. She allots 20 minutes for a routine office visit and 40 minutes for a surgery. The veterinarian cannot do more than 6 surgeries per day. The office has 7 hours available for appointments. If an office visit costs \$55 and most surgeries cost \$125, find a combination of office visits and surgeries that will maximize the income the veterinarian practice receives per day.

2nd- set up the constraints (inequalities)
Total time for appointments:

for office visits:

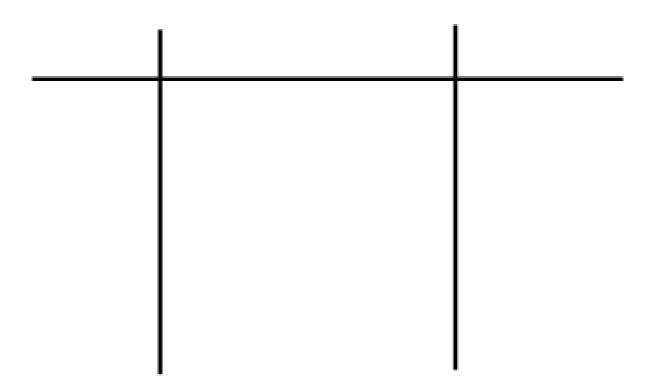
for surgeries:


3rd- write an equation for the veterinarian's daily profit and label it f(x,y)

Lesson 14: Linear programming story problems (3.6)

Example 3 continued:

4th-graph all constraints (inequalities)


5th- identify vertices of the feasible region.

- Find X and Y int so you can get the correct Calculator Window.
- Also, solve for y so you can enter the equation in the calculator to graph and find vertices.

Example 3 continued:

6th - find how many visits and surgeries will maximize profit.

By the end of the lesson, you will be able to:

~ Solve Linear Programming Story Problems

Can you?

Homework:

Assignment 14

Linear Programming Story Problems

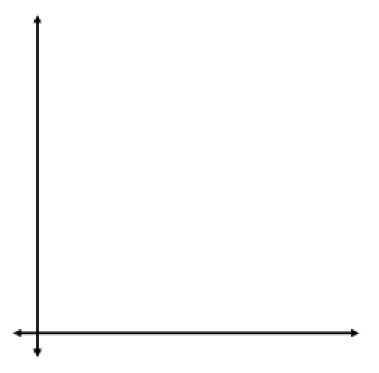
A local herb shop is producing 2 perfumes: gentle rose and rich gardenia. the owner, who has equipment that can make up to 3000 oz of perfume, cannot afford to spend more than \$9000. gentle rose is 2 oz and cost \$3 to make with a profit over cost of \$4. Rich gardenia is 1.5 oz and cost \$6 with a profit over cost of \$5. how many bottle of each perfume should be made for max profit and what is the max profit?

1ST- Define our variables:

2ND- SET UP THE CONSTRAINTS (INEQUALITIES)
FOR TOTAL OZ OF PERFUME:
FOR TOTAL COST OF PERFUME:

FOR BOTTLES OF GENTLE POSE: FOR BOTTLES OF FICH GARDENIA:

Linear Programming Story Problems


A local herb shop is producing 2 perfumes: gentle rose and rich gardenia. the owner, who has equipment that can make up to 3000 oz of perfume, cannot afford to spend more than \$9000. gentle rose is 2 oz and cost \$3 to make with a profit over cost of \$4. Rich gardenia is 1.5 oz and cost \$6 with a profit over cost of \$5. how many bottle of each perfume should be made for max profit and what is the max profit?

3rd- write an equation for the Herb shop's profit and label it f(x,y)

LINEAR PROGRAMMING STORY PROBLEMS

4TH- Graph all constraints (inequalities)

5TH- IDENTIFY VERTICES OF THE FEASIBLE REGION AND FIND THE AMOUNT OF EACH PERFUME TO PRODUCE TO MAXIMIZE PROFIT.

2X + 1.5Y < 3000

 $3X + 6Y \le 9000$

Calculator WINDOW

X-INT: (

)

X-INT: (

)

Y-INT: (

)

Y-INT: (

)

LINEAR PROGRAMMING STORY PROBLEMS

a local Herb shop is producing 2 perfumes; gentle rose and rich gardenia, the owner, who has equipment that can make up to 3000 oz of perfume, cannot afford to spend more than \$9000, gentle rose is 2 oz and cost \$3 to make with a profit over cost of \$4, rich gardenia is 1,5 oz and cost \$6 with a profit over cost of \$5, how many bottle of each perfume should be made for max profit and what is the max profit?

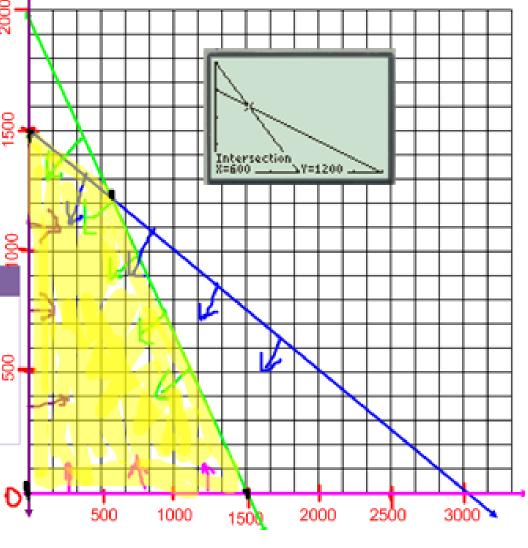
Linear Programming Story Problems

a local Herb shop is producing 2 perfumes; gentle rose and rich gardenia, the owner, who has equipment that can make up to 3000 oz of perfume, cannot afford to spend more than \$9000, gentle rose is 2 oz and cost \$3 to make with a profit over cost of \$4. Rich gardenia is 1,5 oz and cost \$6 with a profit over cost of \$5, how many bottle of each perfume should be made for max profit and what is the max profit?

3rd- Write an equation for the Herb shop's profit and label it f(x,y)

$$f(x,y) = 4x + 5y$$

LINEAR PROGRAMMING STORY PROBLEMS


4TH- Graph all constraints (inequalities)

fary)=4x+sy

5TH- IDENTIFY VERTICES OF THE FEASIBLE REGION AND FIND THE AMOUNT OF EACH PERFUME TO PRODUCE TO MAXIMIZE PROFIT.

(Y,X)		F(X,Y)
(0,0)	4(0) + 5(0) =	f(0,0)=0
(1500, 0)	4(1500) + 5(0) =	f(1500,0)=6000
(600, 1200)	4(600) + 5(1200) =	f(600, 1200)=8400
(0,1500)	4(0) + 5(1500) =	f(0,1500)=7500

The maximum profit is \$8400 by making 600 bottles of Gentle Rose and 1200 bottles of Rich Gardenia.

$$2x+1.5y \le 3000$$

 $x:int:(1500, 0)$
 $1x=3000$
 $y:int:(0,2000)$
 $1.5y=3000$
 $1.5y \le 3000-2x$
 $1.5y \le 3000-2x$
 $1.5y \le 3000-2x$
 $1.5y \le 3000-2x$
 $1.5y \le 3000-2x$

3x+6y =9000 X-Int: (3000,0) 7 X=9000 y-int: (0,1500) uy =9000 Xmax=3000 4=1500 Ymin = D XX1 =500 y = 9000-3x U max = 2000 Jmin = 0 SCI = 500