By the end of the lesson, you will be able to:

~ Solve Linear Programming Story Problems

~Review~

Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the maximum and minimum values of the given function for this region.

$$x - 3y \le 0$$

 $x - 3y \ge -15$
 $4x + 3y \ge 15$
 $x \le 6$
 $f(x,y) = 5x + 2y$
 $\binom{0}{5}$ $\binom{1}{6}$ $\binom{1}{6}$

~Review~

$$\begin{array}{lll} x - 3y \leq 0 & x - 3y \geq -15 & 4x + 3y \geq 15 & x \leq 6 \\ \text{Xint: (0,0)} & \text{X-Int: (-15,0)} & \text{Xint: (24,0)} \\ \text{y-int: (0,0)} & \text{y-int: (0,5)} & \text{Y-int: (0,5)} \\ -\frac{3}{3}y = -\frac{x}{-3} & -\frac{3}{3}z - \frac{x-15}{-3} & \text{Y} \geq -\frac{1}{3}x + 5 \\ -\frac{3}{3}z - \frac{1}{3}z + \frac{1}{3}z +$$

~Review~

Graph the system of inequalities. Name the coordinates of the vertices of the feasible region. Find the maximum and minimum values of the given function for this region.

$$x - 3y \le 0$$

$$x - 3y \ge -15$$

$$4x + 3y \ge 15$$

$$x \le 6$$

$$f(x, y) = 5x + 2y$$

(X,Y)	5X+2Y	F(X,Y)
(0,5)	5しり+2ほ) = 10 5しろ)+2し) = 1子	f(0,5)=10
(3,1)	5(3)+2(1) = 17	£(3,1)=17
(6.2)	5(4)+2(2)=34	f(4,2)=34
(6,7)	5(6)+2(7)=44	f(417)=44

The max is 44 at (4,7). The min is 10 at (0,15).

Linear Programming Story Problems Example 1:

Rosalyn works no more than 20 hours a week during the school year. She is paid \$10 an hour for tutoring geometry students and \$7 an hour for delivering pizzas for Pizza King. She wants to spend at least 3 hours but no more than 8 hours a week tutoring. Find Rosalyn's maximum earnings.

1st- define our variables:

x = number of hours tutoring

y = number of hours delivering

Example 1 continued:

Rosalyn works no more than 20 hours a week during the school year. She is paid \$10 an hour for tutoring geometry students and \$7 an hour for delivering pizzas for Pizza King. She wants to spend at least 3 hours but no more than 8 hours a week tutoring. Find Rosalyn's maximum earnings.

2nd-set up the constraints (inequalities)

for total hours worked: X + y = 20

for hours tutoring: 3 \(\text{X} = \text{8} \) OY \(\text{X} \text{23} \) \(\text{X} \text{\left} \text{8} \)

for hours delivering: $y \ge 0$ $y \le 20$

3rd-write an equation for her weekly profit and label it f(x,y)

Example 1 continued:

4th-graph all constraints (inequalities)

$$x + y \le 20$$
 *int: (20,0) yint: (0,20)

$$x \ge 3$$
 $x \le 8$

$$y \ge 0$$
 $y \le 20$

5th- identify vertices of the feasible region.

$$(3,0)$$
 $(8,0)$

- Find X and Y int so you can get the correct Calculator Window.
- Also, solve for y so you can enter the equation in the calculator to graph and find vertices.

Example 1 continued:

6th - find max of Rosalyn's weekly earnings.

(X,Y)	10X+7Y	F(X,Y)	
(3,0)	10(3)+7(0)=30	f(3,0)=30	
(3,17)	10(3)+7(17)=	F13,17)=119	
(8,0)	10(8)+7(0)=		
(8,12)	10(8)+7(12)=	f(8,12)=(64	×

X Max

Rosalynis max-earnings for the week

Linear Programming Story Problems Example 2:

The Northern Wisconsin Paper Mill can make notebook paper or newsprint. The mill can produce at most 200 units of paper a day. At least 10 units of notebook paper and 80 units of newspaper are required daily by regular customers. If the profit on a unit of notebook paper is \$500 and the profit on a unit of newsprint is \$350, how many units of each paper should the manager have the mill produce each day to maximize profits?

1st-define our variables:

Example 2 continued:

The Northern Wisconsin Paper Mill can make notebook paper or newsprint. The mill can produce at most 200 units of paper a day. At least 10 units of notebook paper and 80 units of newspaper are required daily by regular customers. If the profit on a unit of notebook paper is \$500 and the profit on a unit of newsprint is \$350, how many units of each paper should the manager have the mill produce each day to maximize profits?

2nd- set up the constraints (inequalities)

For total amount of paper: $X + Y \leq 200$

For units of Notebook paper: $\times \geq 10$

For units of newspaper: $5 \ge 80$

3rd- write an equation for the mill's daily profit and label it f(x,y)

$$f(xy) = 500x + 350y$$

Example 2 continued:

4th-graph all constraints (inequalities)

$$X + y \le 200$$
 Test: (90)
 $X + y \le 200$ Test: (90)
 $Y + y \in (200,0)$ Test: (90)
 $Y + y \in (200,0)$ Test: (90)

5th- identify vertices of the feasible region.

- Find X and Y int so you can get the correct Calculator Window.
- Also, solve for y so you can enter the equation in the calculator to graph and find vertices.

Example 2 continued:

6th - find the amount of each paper to produce to maximize profit.

$$\frac{(x,y)}{(10,80)} = \frac{500 \times +350y}{500(10) +350(80)} = \frac{f(x,y)}{f(10,80)} = \frac{33,000}{500(10) +350(10)} = \frac{7(10,80)}{500(10) +350(10)} = \frac{7(10,80)}{500(120) +350(80)} = \frac{7(120,80)}{500(120) +350(80)} = \frac{88,000}{7}$$

To maximize their profit of \$88,000, the paper company needs to make 120 units of notebook paper and 80 units of newsprint.

Linear Programming Story Problems Example 3:

As a receptionist for a veterinarian, one of Dolores Alvarez's tasks is to schedule appointments. She allots 20 minutes for a routine office visit and 40 minutes for a surgery. The veterinarian cannot do more than 6 surgeries per day. The office has 7 hours available for appointments. If an office visit costs \$55 and most surgeries cost \$125, find a combination of office visits and surgeries that will maximize the income the veterinarian practice receives per day.

1st- define our variables:

Example 3 continued:

As a receptionist for a veterinarian, one of Dolores Alvarez's tasks is to schedule appointments. She allots 20 minutes for a routine office visit and 40 minutes for a surgery. The veterinarian cannot do more than 6 surgeries per day. The office has 7 hours available for appointments. If an office visit costs \$55 and most surgeries cost \$125, find a combination of office visits and surgeries that will maximize the income the veterinarian practice receives per day. $\frac{1}{2} \frac{1}{6} \frac{1}{3} = \frac{420}{3} \frac{1}{3} \frac{1$

2nd- set up the constraints (inequalities)

Total time for appointments: $20 \times +40 \text{y} \le 420$

for office visits: $\times \geq \bigcirc$

for surgeries: $y \leq 6$ $y \geq 7$

3rd- write an equation for the veterinarian's daily profit and label it $f(x,y) = f(x,y) = 55 \times 4 \cdot 125 \text{ y}$

Example 3 continued:

4th-graph all constraints (inequalities)

5th- identify vertices of the feasible region.

- Find X and Y int so you can get the correct Calculator Window.
- Also, solve for y so you can enter the equation in the calculator to graph and find vertices.

Example 3 continued:

6th - find how many visits and surgeries will maximize profit.

(x.y)	55x +125y	f(x,y)=
(0,0)	55(0)+125(0)	f(0,0)=0
(0,6)	55(0) + 125(6)	f(0,6)~750
-	55(21)+125(0)	f(21,0)=1159
(9,6)	55(9)+125(6)	f (9,16)=1245

The max profit is \$1245. They would need to schedule 9 office visits and 6 surgeries to get their max profit.

By the end of the lesson, you will be able to:

~ Solve Linear Programming Story Problems

Can you?

Homework:

Assignment 14

You want to make jars of tomato sauce and jars of salsa from your left over Tomatoes and onions. A jar of tomato sauce requires 10 tomatoes and 1 onion, and a jar of salsa requires 5 tomatoes and $\frac{1}{4}$ an onion. You have 180 tomatoes and 15 onions to use. You'll make a profit of \$2 on every jar of tomato sauce and a profit of \$1.50 on every jar of salsa sold. How many jars of each should you make to maximize profit? What would your max profit be?

Linear Programming Story Problems

A local herb shop is producing 2 perfumes: gentle rose and rich gardenia. the owner, who has equipment that can make up to 3000 oz of perfume, cannot afford to spend more than \$9000. gentle rose is 2 oz and cost \$3 to make with a profit over cost of \$4. Rich gardenia is 1.5 oz and cost \$6 with a profit over cost of \$5. how many bottle of each perfume should be made for max profit and what is the max profit?

1ST- Define our variables:

2ND- SET UP THE CONSTRAINTS (INEQUALITIES)
FOR TOTAL OZ OF PERFUME:
FOR TOTAL COST OF PERFUME:

FOR BOTTLES OF GENTLE POSE: FOR BOTTLES OF FICH GARDENIA:

Linear Programming Story Problems

A local herb shop is producing 2 perfumes: gentle rose and rich gardenia. the owner, who has equipment that can make up to 3000 oz of perfume, cannot afford to spend more than \$9000. gentle rose is 2 oz and cost \$3 to make with a profit over cost of \$4. Rich gardenia is 1.5 oz and cost \$6 with a profit over cost of \$5. how many bottle of each perfume should be made for max profit and what is the max profit?

3rd- write an equation for the Herb shop's profit and label it f(x,y)

LINEAR PROGRAMMING STORY PROBLEMS

4TH- Graph all constraints (inequalities)

5TH- IDENTIFY VERTICES OF THE FEASIBLE REGION AND FIND THE AMOUNT OF EACH PERFUME TO PRODUCE TO MAXIMIZE PROFIT.

2X + 1.5Y < 3000

 $3X + 6Y \le 9000$

Calculator WINDOW

X-INT: (

)

X-INT: (

)

Y-INT: (

)

Y-INT: (

)

LINEAR PROGRAMMING STORY PROBLEMS

a local Herb shop is producing 2 perfumes; gentle rose and rich gardenia, the owner, who has equipment that can make up to 3000 oz of perfume, cannot afford to spend more than \$9000, gentle rose is 2 oz and cost \$3 to make with a profit over cost of \$4, rich gardenia is 1,5 oz and cost \$6 with a profit over cost of \$5, how many bottle of each perfume should be made for max profit and what is the max profit?

Linear Programming Story Problems

a local Herb shop is producing 2 perfumes; gentle rose and rich gardenia, the owner, who has equipment that can make up to 3000 oz of perfume, cannot afford to spend more than \$9000, gentle rose is 2 oz and cost \$3 to make with a profit over cost of \$4. Rich gardenia is 1,5 oz and cost \$6 with a profit over cost of \$5, how many bottle of each perfume should be made for max profit and what is the max profit?

3rd- Write an equation for the Herb shop's profit and label it f(x,y)

$$f(x,y) = 4x + 5y$$

LINEAR PROGRAMMING STORY PROBLEMS

4TH- Graph all constraints (inequalities)

fary)=4x+sy

5TH- IDENTIFY VERTICES OF THE FEASIBLE REGION AND FIND THE AMOUNT OF EACH PERFUME TO PRODUCE TO MAXIMIZE PROFIT.

(Y,X)		F(X,Y)
(0,0)	4(0) + 5(0) =	f(0,0)=0
(1500, 0)	4(1500) + 5(0) =	f(1500,0)=6000
(600, 1200)	4(600) + 5(1200) =	f(600, 1200)=8400
(0,1500)	4(0) + 5(1500) =	f(0,1500)=7500

The maximum profit is \$8400 by making 600 bottles of Gentle Rose and 1200 bottles of Rich Gardenia.

$$2x+1.5y \le 3000$$

 $x:int:(1500, 0)$
 $1x=3000$
 $y:int:(0,2000)$
 $1.5y=3000$
 $1.5y \le 3000-2x$
 $1.5y \le 3000-2x$
 $1.5y \le 3000-2x$
 $1.5y \le 3000-2x$
 $1.5y \le 3000-2x$

3x+6y =9000 X-Int: (3000,0) 7 X=9000 y-int: (0,1500) uy =9000 Xmax=3000 4=1500 Ymin = D XX1 =500 y = 9000-3x U max = 2000 Jmin = 0 SCI = 500