Section 5-1: Monomials

Lesson 15

At the end of this lesson, you should be able to:

* Multiply and divide monomials.

Exponents are used in algebraic expressions called monomials.

A monomial is an expression that is a number, a variable or the product of a number and one or more variables.

Some examples of monomials are:

$$5c$$
, $-a$

$$x^3$$
,

$$5c$$
, $-a$, 17 , x^3 , $\frac{1}{2}x^4y^2$

Definitions

~ Constants: Monomials that contain no variables. (Just a #)

Coefficient: The number that is multiplied by the variable.

Rules of Powers

A POWER is an expression in the form of x^n .

Multiplying Powers:

For any real number a and integers m and n,

$$\begin{bmatrix} a^m \cdot a^n = a^{m+n} \\ ex : 3^2 \cdot 3^2 = 3^5 \end{bmatrix}$$

Dividing Powers:

For any real number a, except a=0, and integers m and n,

$$2x: \frac{2^{5}}{2^{1}} = 2^{4}$$
 $\frac{a^{m}}{a^{n}} = a^{m-n}$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$eX: \frac{X^3}{X^2} = X$$

Properties of Powers

Suppose m and n are integers and a and b are real numbers. Then the following properties hold.

$$(a^m)^n=a^{mn}$$

Power of a Power: $\left((a^m)^n = a^{mn} \right) \mathcal{L} \times \left((\chi^3)^2 = \chi^6 \right)$

Power of a Product: $(ab)^m = a^m b^m$

$$(ab)^m = a^m b^m$$

$$ex: (3x)^{2} - 3^{2}x^{2}$$

$$= \sqrt{9x^{2}}$$

Properties of Powers

Suppose m and n are integers and a and b are real numbers.

Then the following properties hold.

Power of a Quotient:

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

ex: (3)

3/ 1

Zero Exponents:

$$\frac{a^m}{a^m} = a^0 = 1$$

$$\frac{3^{2}}{3^{2}} = 3^{6} = 1$$

Simplify each expression.

Ex 1:
$$(2x^2y^3)(-5x^4y^2) = (1)(-5) (x^2)(x^4)(y^3)(y^2)$$

Ex 2:
$$(2ab^2)(-4a^3b^3c)$$

Ex 3:
$$(6a^3b^2)^0 =$$

Ex 4:
$$(t^3)^4 = t^{12}$$

$$t^3 \cdot t^3 \cdot t^3 \cdot t^3$$

Ex 5:
$$(t^3 w^6)^3 = \{t^9 w^{18}\}$$

 $(t^3)^3 (w^9)^3$

Ex 6:
$$\frac{p^9}{p^6} = \boxed{\mathbb{P}^3}$$

$$E_{x} = \frac{5x^3y^2}{x^3y} = 5y$$

ex:
$$y^2 = \frac{1}{y^3}$$

Ex 8:
$$\frac{-2c^3d^6}{24c^2d^2} = -\frac{1c'd^2}{12}$$

$$-\frac{1}{12} c d^{4} = \frac{c d^{4}}{12}$$
or
$$\frac{-1 c d^{4}}{12}$$

Ex 9:
$$\frac{16}{x^0 + y^0} = \frac{16}{1+1} = \frac{16}{2} = 8$$

Ex 10:
$$\left(\frac{-4x^{3n}}{x^{2n}z^2}\right)^3 = \frac{(-4x^{3n})^3}{(x^{2n}z^2)^3} = \frac{(-4)^3(x^{3n})^3}{(x^{2n})^3(z^2)^3}$$
$$= \frac{-(-4)^3(x^{3n})^3}{(x^{2n}z^2)^3} = \frac{(-4)^3(x^{3n})^3}{(x^{2n})^3(z^2)^3}$$
$$= \frac{-(-4)^3(x^{3n})^3}{(x^{2n}z^2)^3} = \frac{(-4)^3(x^{3n})^3}{(x^{2n})^3(z^{2n})^3} = \frac{(-4)^3(x^{3n})^3}{(x^{2n})^3(z^{2n})^3}$$

Assignment 15

Due next class period

