Section 5-1: Monomials

Lesson 16

Objective:

" Simplify Monomials with negative exponents.

~ Rule ~

Negative Exponents: For any real number a, and any integer n, where $a \neq 0$

$$a^{-n} = \frac{1}{a^n} \text{ or } \frac{1}{a^{-n}} = a^n$$

For example: $\frac{1}{x^2}$ can be written as x^{-2}

Example: Write the expression in a different way

1.
$$\frac{1}{x^{25}}$$

2.
$$5y^{-7}$$

Properties of Powers

Suppose m and n are integers and a and b are real numbers. Then the following properties hold.

Power of a Power:
$$(a^m)^n = a^{mn}$$

Power of a Product: $(ab)^m = a^m b^m$

Power of a Quotient:
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$
 or $\frac{b^n}{a^n}$, $a \neq 0$, $b \neq 0$

Simplify each expression by rewriting without parentheses or negative exponents.

Ex 1:
$$3x^{-4}$$

Simplify.

Ex 2: $5^{-2}x^{-3}y^0$

Simplify.

Ex 3:
$$\frac{-6a^4}{2a^{-2}}$$

Simplify.

Ex 4:
$$\frac{8m^3n^2}{-4m^{-1}n^3}$$

Simplify.

Ex 5:
$$\frac{8w^{-5}x^4}{(2w^3x^3)^0}$$

Simplify.

Ex 6:
$$\left(\frac{-4}{n}\right)^{-3}$$

Assignment 16

Due next class period

