By the end of the lesson, you will be able to:

- ~ Solve problems using order of operations
- ~ Classify numbers into sets of numbers
- ~ Find products using the distributive property

Order of Operations

1st: Simplify the expressions inside grouping symbols ex: grouping symbols

2nd: Evaluate all powers

ex: "What are powers"?

3rd: Do all multiplications & divisions from <u>left to right</u> ex:

4th: Do all additions & subtractions from <u>left to right</u> ex:

Order of Operations

Or an easier way to remember the rules of order of operations:

Example 1:

Evaluate $8 + 3 \cdot 5^2 - (18 - 8) \div 5$.

Please Excuse My Dear Aunt Sally!

Parentheses (or other grouping symbols)

Exponents

Multiplication and

Division (left to right)

Addition and

Subtraction (left to right)

Example 2:

Evaluate: $20 \div 4 \cdot 5 \cdot 2 \div 10$

Please Excuse My Dear Aunt Sally!

Parentheses (or other grouping symbols)

Exponents

Multiplication and

Division (left to right)

Addition and

Subtraction (left to right)

Example 3:

Evaluate:
$$\frac{6^2 - 4^2}{2(3 - 2)} - 2^3$$

Using substitution for variables

Example 1: Evaluate each expression when v = 5, x = 3, a = 7, and b = 5.

$$v^2 - (x^3 - 4b)$$

Using substitution for variables

Example 2: Evaluate each expression when v = 5, x = 3, a = 7, and b = 5.

$$(2v)^2 + ab - 3x$$

Number Sets!

Natural Numbers- Symbol: ______
Are counting numbers (positive numbers)
ex:

Whole Numbers- Symbol: ______ Are all of the natural numbers including 0.

[remember whole #'s have a "hole" (0) in it]

ex:

Integers- Symbol: ____

Are the whole numbers plus with the negative numbers ex:

Rational Numbers- Symbol: _____

Can be expressed as a ratio of two integers. The decimal form of rational numbers are either a terminating or repeating decimal.

ratio?:

ex:

Irrational Numbers- Symbol: _____

Are any numbers that are NOT rational. Irrationals have decimals that go on forever.

ex:

Real Numbers- Symbol: ____

Are all the numbers that you use in everyday life, they are rational and irrational numbers combined.

ex:

Real Numbers

Name the ALL the sets of numbers that each belongs to

- a.) 5
- b.) -32
- c.) 3/4
- d.) pi

True or False? If false, give an example of why it is false.

- a.) Every real number is irrational.
- b.) Every integer is a rational number.
- c.) Every integer is a whole number.
- d.) Every whole number is an integer.

True or False? If false, give an example of why it is false.

- e.) Every irrational number is a real number.
- f.) Every natural number is an integer.
- g.) Every real number is either a rational number or an irrational number.

Distributive Property

What does DISTRIBUTE mean?

Distribute:

Distribute the cupcake.

This is the distributive property. We will be doing this to expressions with numbers and variables.

Find the product:

$$2x(y + 13) =$$

Find the product for each:

$$1.7(6x + 5y + 2) =$$

$$2.2a^2$$
 (a - b) =

Find the product for each:

3.
$$\frac{1}{2}(3a-2b)-\frac{3}{4}(4a+2b)$$

Find the product for each:

$$(2(2a-b)+6(3a+4b))$$

By the end of the lesson, you will be able to:

- ~ Solve problems using order of operations
- ~ Classify numbers into sets of numbers
- ~ Find products using the distributive property

Can you?

Homework:

Assignment #2:

Due at the end of next class