By the end of the lesson, you will be able to:

- ~ Solve problems using order of operations
- ~ Classify numbers into sets of numbers
- ~ Find products using the distributive property

Order of Operations

1st: Simplify the expressions inside grouping symbols ex: grouping symbols

2nd: Evaluate all powers

ex: "What are powers"?

exponents

3rd: Do all multiplications & divisions from left to right

ex: 4(3)

12÷4

4th: Do all additions & subtractions from left to right

ex: 5+4

-3-11

Order of Operations

Or an easier way to remember the rules of order of operations:

Example 1:

Evaluate
$$8 + 3 \cdot 5^2 - (18 - 8) \div 5$$
.

$$= 8 + 3 \cdot 5^2 - 10 \div 5$$

$$= 8 + 3 \cdot 25 - 10 \div 5$$

$$= 8 + 75 - 2$$

$$= 83 - 2$$

$$= 81$$

Please Excuse My Dear Aunt Sally!

Parentheses (or other grouping symbols)

Exponents

Multiplication and

Division (left to right)

Addition and

Subtraction (left to right)

Example 2:

Evaluate:
$$20 \div 4 \cdot 5 \cdot 2 \div 10$$

$$= 5 \cdot 5 \cdot 2 \div 10$$

$$= 25 \cdot 2 \div 10$$

$$= 50 \div 10$$

$$= 5$$

Please Excuse My Dear Aunt Sally!

Parentheses (or other grouping symbols)

Exponents

Multiplication and

Division (left to right)

Addition and

Subtraction (left to right)

Example 3:

Evaluate:
$$\frac{6^2 - 4^2}{2(3 - 2)} - 2^3$$

$$= \frac{36 - 16}{2(1)}$$

$$= \frac{20}{2} - 8$$

$$= \frac{10 - 8}{2}$$

Using substitution for variables

Example 1: Evaluate each expression when v = 5, x = 3, a = 7, and b = 5.

$$v^{2} - (x^{3} - 4b)$$

$$= 5^{2} - (3^{3} - 4.5)$$

$$= 5^{2} - (27 - 4.5)$$

$$= 5^{2} - (27 - 20)$$

$$= 5^{2} - 7$$

$$= 25 - 7$$

$$= 25 - 7$$

Using substitution for variables

Example 2: Evaluate each expression when v = 5, x = 3, a = 7, and b = 5.

$$= (2v)^{2} + ab - 3x$$

$$= (2v)^{2} + 7 \cdot 5 - 3 \cdot 3$$

$$= (10)^{2} + 7 \cdot 5 - 3 \cdot 3$$

$$= (10) + 7 \cdot 5 - 3 \cdot 3$$

$$= (10) + 35 - 9$$

$$= (126)$$

Number Sets!

Natural Numbers- Symbol:

Are counting numbers (positive numbers)

ex: 1,2,3,4,...

Whole Numbers- Symbol: 🔱

Are all of the natural numbers including 0.

[remember whole #'s have a "hole" (0) in it]

ex: 0,1,2,3,4,...

Integers- Symbol: ____

Are the whole numbers plus with the negative numbers ex:

Rational Numbers- Symbol: 🖳

Can be expressed as a ratio of two integers. The decimal form of rational numbers are either a terminating or repeating decimal.

ex:
$$\frac{1}{4}$$
, 25, $\frac{1}{3}$, $\frac{1}{3}$

Irrational Numbers- Symbol: ____

Are any numbers that are NOT rational. Irrationals have decimals that go on forever.

Real Numbers- Symbol: 18

Are all the numbers that you use in everyday life, they are rational and irrational numbers combined.

Real Numbers

Name the ALL the sets of numbers that each belongs to

a.) 5
$$N, \omega, \mathbb{Z}, \mathbb{Q}, \mathbb{K}$$

c.)
$$3/4$$
 Q , \mathbb{R}

d.) pi
$$\pi$$
 \coprod \Re

True or False? If false, give an example of why it is false.

a.) Every real number is irrational.

b.) Every integer is a rational number.

d.) Every whole number is an integer.

True or False? If false, give an example of why it is false.

- e.) Every irrational number is a real number.
- f.) Every natural number is an integer.
- g.) Every real number is either a rational number or an irrational number.

<u>Distributive Property</u>

What does DISTRIBUTE mean?

Spread out, give out to all

Distribute:

Distribute the cupcake.

This is the distributive property. We will be doing this to expressions with numbers and variables.

Find the product:

$$2x (y + 13) = (2xy + 26x)$$

Find the product for each:

$$1.7(6x + 5y + 2) = (42x + 35y + 14)$$

2.2a² (a - b) =
$$(2a^3 - 2a^2b)$$

Find the product for each:

$$3. \frac{1}{2}(3a-2b) - \frac{3}{4}(4a+2b)$$

$$= \frac{1}{2} \cdot \frac{3a}{4} - \frac{1}{2} \cdot \frac{2}{5}b - \frac{3}{2} \cdot \frac{4}{4}a - \frac{3}{2} \cdot \frac{2}{5}b$$

$$= \frac{3}{2}a - b - 3a - \frac{3}{2}b$$

$$= \frac{3}{2}a - \frac{3}{2}a - \frac{1}{2}b - \frac{3}{2}b$$

$$= \frac{3}{2}a - \frac{1}{2}a - \frac{2}{2}b - \frac{3}{2}b$$

$$= \frac{3}{2}a - \frac{1}{2}a - \frac{2}{2}b - \frac{3}{2}b$$

Find the product for each:

$$(2(2a-b)+6(3a+4b))$$

By the end of the lesson, you will be able to:

- ~ Solve problems using order of operations
- ~ Classify numbers into sets of numbers
- ~ Find products using the distributive property

Can you?

Homework:

Assignment #2:

Remember to do the homework in the order it is written in the packet - write down the original problem!

Also, two columns at most.