By the end of this lesson, you will be able to:

- Write verbal expressions algebraically
- Write algebraic expressions verbally
- Solve equations for one variable
- Solve inequalities for one variable

Verbal and Algebraic Expressions:

Algebraic Expression:

ex: How would you sayx+2 verbally?

Verbal Expression:

Verbal Expression:

ex: How would you writex less than 2 algebraically?

Algebraic Expression:

Mathematical operations in verbal expressions

Addition	Subtraction
plus	minus
more than	less than
the sum of	the difference of
increased by	decreased by
added to	subtracted from
Multiplication	Division
the product of	the quotient of
multiplied by	divided by
times	the ratio of
twice	half
Exponents	
squared	
cubed	
to the power	

- Write an algebraic expression or equation for each verbal expression.
 - a. Four times the sum of a number and two

- b. Five increased by three times a number
- 2. Write a verbal expression for each algebraic expression
 - a. 20-y

e. 5x

Solving Equations

$$1. \ 3(2a + 25) - 2(a - 1) = 78$$

Solving Equations - clear fractions

$$2. \quad \frac{5}{7}x - 4 = \frac{3}{7}x + 1$$

Solving Equations - clear fractions

3.
$$\frac{3}{4} - \frac{1}{2}(n) = \frac{4}{5}$$

Solving Equations

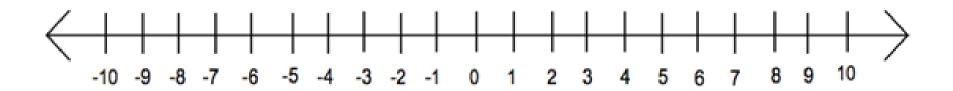
$$4. -1.6w + 5 = -7.8$$

Solving Equations

$$5. -4(6y - 5) = 23 - 3(8y + 1)$$

Solving Equations - clear fractions

6.
$$-1\frac{3}{4}p = \frac{-5}{8}$$

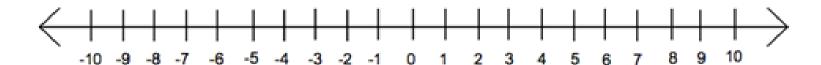

An <u>Inequality</u> has a greater than (>), greater than or equal to (\ge) , less than (<), or less than or equal to (\le) sign instead of an equal (=) sign.

For example:

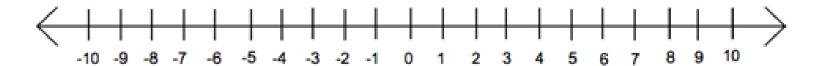
An Equation is 3x - 4 = 14

An Inequality is 3x - 4 < 14

We will be solving for x to find where we can make this sentence be true, and then we will graph the solution.



Let's start with graphing on a number line.


1. x > 3

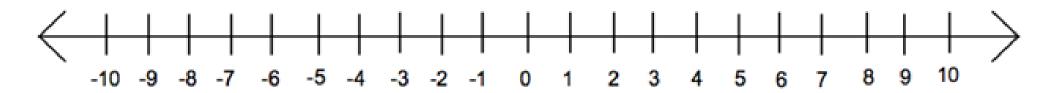
2. x < 6

3. x ≥ -5

Solving Inequalities

You solve inequalities just like you would solve an equation.

You only have to watch for one thing: Dividing or Multiplying by a negative number. If you do do this, you need to switch the inequality sign.


For example: -3x > 12 You need to divide by a -3.

This means you need to switch the inequality. It will end up being:

$$x < -4$$

Let's solve some examples and then graph them. (Watch out for those negatives! What should you do if to the </> if you divide or multiply by a negative?)

1.
$$6x + 3 > 5x - 2$$

Let's solve some examples and then graph them.(Watch out for those negatives! What should you do if to the </> if you divide or multiply by a negative?)

$$2. -3x - 4 < 14$$

Let's solve some examples and then graph them.(Watch out for those negatives! What should you do if to the </> if you divide or multiply by a negative?)

3.
$$-3(4x + 7) < 21$$

By the end of this lesson, you will be able to:

- Write verbal expressions algebraically
- Write algebraic expressions verbally
- ~ Solve equations for one variable
- Solve inequalities for one variable

Can you?

Homework:

Assignment #3: