
By the end of the lesson, you will be able to:

- ~ Solve a linear programming problem.
- ~ Find a maximum or minimum of a linear programming problem.

~Review~

Graph the following system of inequalities (x and y int):

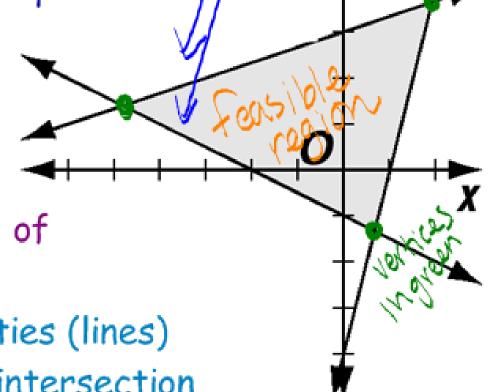
$$x - 3y \ge -9$$

$$4x - y \le 4$$

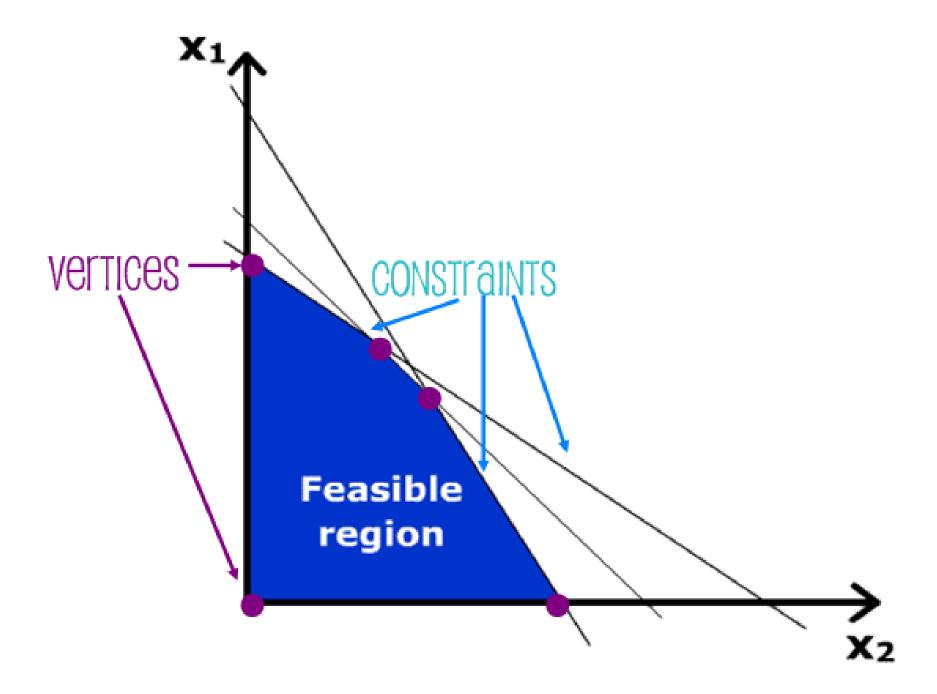
$$x + 2y \ge -2$$

Using the same systems of inequalities:

$$x - 3y \ge -9$$


$$4x - y \le 4$$

$$x + 2y \ge -2$$



- 1. Constraints: the inequalities (lines)
- 2. Vertices: The points of intersection
- 3. Feasible Region: The shaded region

~Label each part on the given graph~

anstraints

Linear Programming

is a process of finding a <u>maximum</u> or <u>minimum</u> of a function by using vertices of the polygon formed by the graph of the constraints.

<u>Lesson 13: Linear Programming</u>

~New notation~

```
f(x)=y
example: y=x+2 can also be written as f(x)=x+2
y=50+2
So if we were wanting to find out what y is when x=50, we can re-write this as f(50)=50+2. therefore, f(50)=52 or when x=50, y=52.
```

~So we know that (50, 52) is a solution to y=x+2~

Example:

if
$$f(x)=6x-4$$
, what is $f(2)$?

$$f(2) = 6(2) - 4$$

$$f(2) = 12 - 4$$

$$f(2) = 8$$

What is f(10)?

$$f(10) = (e(10) - 4)$$

 $f(10) = (e(10) - 4)$
 $f(10) = (e(10) - 4)$

~SIMILARLY~

If
$$f(x,y)=2x+y$$

how would we find $f(3,4)$?
 $f(3,4) = 2(3) + 4$
 $f(3,4) = (6+4)$

We would plug 3 in for x and 4 in for y, so we would get:

$$f(3,4)=2(3)+4$$

Example:

if
$$f(x,y)=5x-4y$$
, what is $f(2,1)$?
 $f(2,1) = 5(2)-4(1)$
 $= 10-4$

What is f(6,3)?

$$f(4,3) = 5(6) - 4(3)$$

$$f(4,3) = 30 - 12$$

$$f(4,3) = 18$$

Finding Maximums and Minimums of Linear Programming:

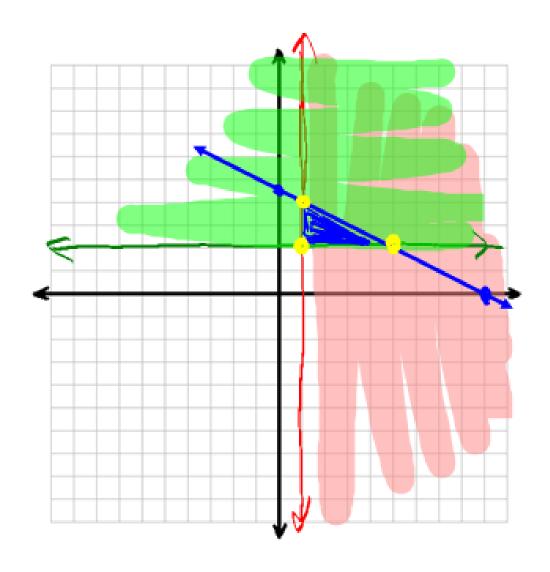
Follow these four steps:

- 1. Graph the inequalities. (2 shade)
- 2. Find the vertices of the feasible region. (Points)
- 3. Use a chart to find the max & min values of the function.

$points + (x_1y_1) = 2x - 3y_1$				
(Y,X)	FUNCTION EQUATION	F(X,Y)		
(211)	2(2)-3(1)=	f(2,1) = 1		
()				
$ (\) $				

4. The point which has the biggest f(x,y) is the max. The point that has the smallest f(x,y) is the min.

Example 1: Find the Max and Min for the polygonal region. Use the following equation: f(x,y) = 2x - 3y


```
x \ge 1
      y \ge 2
x + 2y \le 9 Test: (0,0)

x + x \le 9 Test: (0,0)

y + x \le 9 Oto \le 9

y + x \le 9 Oto \le 9

What are the vertices?
```


Work for Example 1: (x and y int so you can graph)

$$x \ge 1$$

$$y \ge 2$$

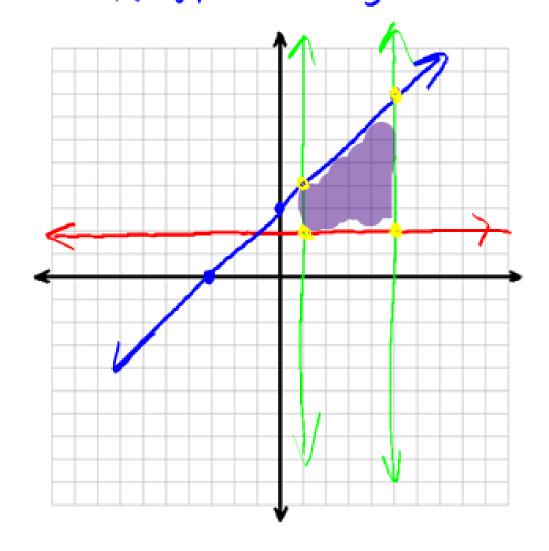
$$x \ge 1 \qquad \qquad y \ge 2 \qquad \qquad x + 2y \le 9$$

Work for Example 1: (Put vertices in chart so you can find the Maximum and Minimum.) f(x,y) = 2x - 3y

(X,Y)	2X-3Y	F(X,Y)	
(1,2)	2(1)-3(2)=	f(1,2)=-4	
(5,2)	2(1)-3(2)= 2(5)-3(2)=	f(5,2) = 4	Wax
	2(1) - 3(4) =		

The Maximum is: 4 at (5,2)

The Minimum is: -10 at (114)


Example 2: Find the Max and Min for the polygonal region. Use the following equation: f(x,y) = -2y + 3x F(x,y) = 3x - 2y

$$y \ge 2$$

$$1 \le x \le 5$$

$$y \le x + 3$$
 (3.0) (0.3)

What are the vertices?

Work for Example 2: (x and y int so you can graph)

$$y \ge 2$$

$$1 \le x \le 5$$

$$y \ge 2$$
 $1 \le x \le 5$ $y \le x + 3$

<u>Lesson 13: Linear Programming</u>

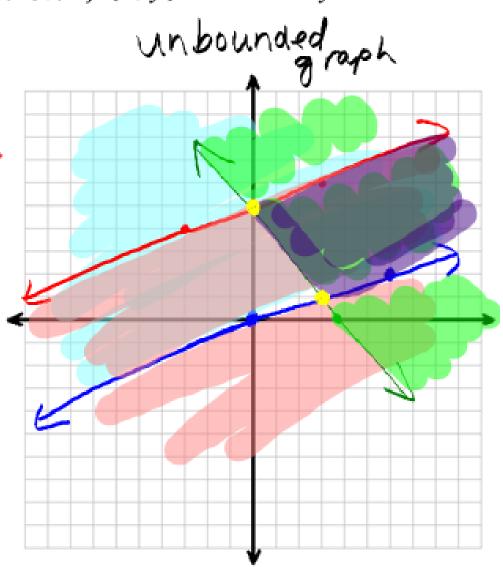
Work for Example 2: (Put vertices in chart so you can

find the Maximum and Minimum.) f(x,y) = -2y + 3x3x-24

(X,Y)	3X-2Y	F(X,Y)
(1,2)	3(1)-2(2)=-1	f(1,2)=-1
(1,4)	3(1)-2(4)=-5	P(1,4)= -5
(5,2)	3(1)-2(4)=-5	f(5,2)=11
(5,8)	3(5)-2(8)=-1	£(5,8)=-1
,		

The Maximum is: 1 at (5,2)

The Minimum is: 5 at (114)


Example 3: Find the Max and Min for the polygonal

region. Use the following equation: f(x,y) = 5x + 2y

$$x - 3y \le 0$$
 $x - 3y \le -15$
 $x - 3y \ge -15$
 $4x + 3y \ge 15$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 $5 = 0$
 5

What are the vertices?

(31)

<u>Lesson 13: Linear Programming</u>

Work for Example 3: (x and y int so you can graph)

$$x - 3y \le 0
x - 3y \le -2
x - 3y \le -3
y - x + (0,0)
Yint: (0,0)$$

$$\begin{array}{c} x - 3y \ge -15 \\ x - 3y \ge (+5, 0) \\ y - 3y \ge (-5, 0) \\ -3y \ge (-3, 0) \\ -3y \le (-3, 0) \\ -3y \le (-3, 0) \\ \end{array}$$

$$4x + 3y \ge 15$$
 $(3.25.0)$
 $X-int: (57.0)$
 $y-int: (0.5)$

Work for Example 3: (Put vertices in chart so you can find the Maximum and Minimum.) f(x,y) = 5x + 2y

$$\frac{(x_1y)}{(0_15)} \frac{5x + 2y}{5(0) + 2(5)} = \frac{f(x_1y)}{f(0_15) = 10} \quad \text{min}$$

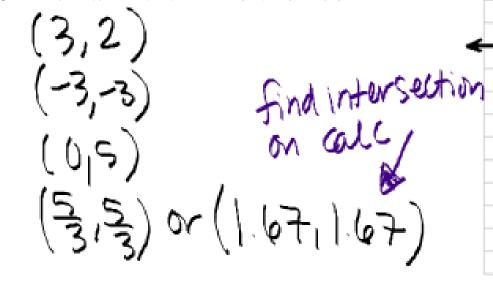
$$\frac{(3_11)}{5(3) + 2(1)} = \frac{f(3_11) = 17}{f(3_11) = 17}$$

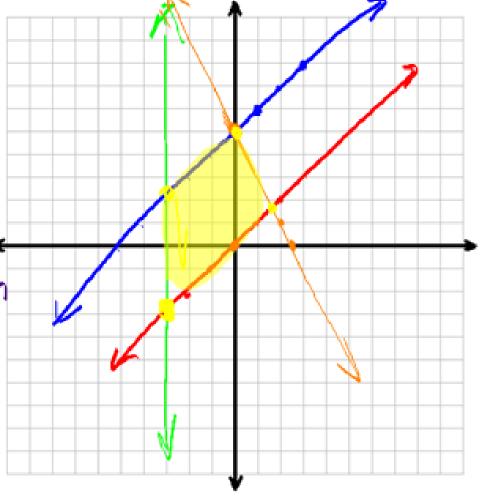
The Maximum is: unbounded

The Minimum is: 10 at (0,5)

Example 4: Find the Max and Min for the polygonal region. Use the following equation: f(x, y) = x - 2y

$$y \le x + 5$$


$$y \ge x$$


$$x \ge -3$$

$$y + 2x \le 5$$

$$(5,0)$$

What are the vertices?

Work for Example 4: (x and y int so you can graph)

$$y \le x + 5$$

$$y \ge x$$

$$y \ge x$$
 $x \ge -3$

$$y + 2x \le 5$$

Graph
$$y = X$$

 $y = -2X + 5$

and find intersection on Calculator

Work for Example 4: (Put vertices in chart so you can find the Maximum and Minimum.) f(x,y) = X - 2y

(N, N)	X-2y	f(x,4)
(-3,2)	-3-2(2)=-7	f(-3,-3)=3 max
(-3, -3)	-3-2(-3)=3	t(0'2)=-10 Win t(-3'-3)=-3 Wax
(0,5)	0 - 2(5) = -10	+(0/2)=-10 111
(1.67,1.67)	1.67 - 2(1.67)=	f(1.67,1.67)=-1-6
	-1.67	

The Maximum is: 3 at (-3,-3)

The Minimum is: -10 at (0,5)

<u>Lesson 13: Linear Programming</u>

By the end of the lesson, you will be able to:

- ~ Solve a linear programming problem.
- ~ Find a maximum or minimum of a linear programming problem.

Can you?

Homework:

Test Review 3 worksheet

Due next time (test day)

~Assignment #13~ Due day after test

You may use a calculator to find the vertices.