By the end of the lesson, we will be able to:

- Simplify exponential equations using the product rule, the quotient rule, the power rule, and the Law of Exponents.
- Evaluate Exponential expressions with a Zero or Negative exponent.
- Convert between Scientific Notation and Decimal Notation.
- Use Scientific Notation to multiply and divide.

NOTATION: in the expression a^n a is called the *base*, and n is called the *exponent or power*.

Let's look at the rules for combining exponents.

<u>Multiplying</u> - add exponents. If there are numerical coefficients, you multiply them, then deal with the variables.

$$a^m \cdot a^n = a^{m+n}$$

A)
$$3^2 \cdot 3^3 =$$

B)
$$2z^2 \cdot 5z^4 =$$

<u>Dividing</u> - <u>subtract exponents</u> If there are numerical coefficients, you divide or reduce the fraction before you deal with the variables.

$$\frac{a^m}{a^n} = a^{m-n}$$

$$C)\frac{6^4}{6} =$$

$$D)\frac{25m^8}{15m^3} =$$

Zero Exponents - any number or variable that has a zero exponent is always equal to 1

$$\frac{a^m}{a^m} = a^0 = 1$$

E)
$$5^0 =$$

F)
$$18x^0 =$$

Negative exponents - moving the exponential factor to the denominator creates a positive exponent.

$$a^{-n} = \frac{1}{a^n}$$
 or $\frac{1}{a^{-n}} = a^n$

$$H)5b^{-4} =$$

1)
$$\frac{5}{3}z^{-3} \cdot \left(-\frac{9}{20}z^4\right) =$$

Power to a power - multiply exponents

$$(a^m)^n = a^{mn}$$

J)
$$(3^2)^4 =$$

$$(7^2)^0 =$$

Power of a product - exponent applies to each factor (like distributing).

$$(ab)^n = a^n b^n$$

L)
$$(2a)^4 =$$

M)
$$(-4b^3)^{-2} =$$

Power of a quotient - exponent applies to numerator and denominator.

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

N)
$$\left(\frac{z}{5}\right)^3 =$$

$$O) \quad \left(\frac{5b^3}{c^2}\right)^2 =$$

<u>Power of a negative quotient</u> - exponent <u>applies to</u> numerator and denominator (like distributing) This will cause everything inside to switch places.

$$\left(\frac{a}{b}\right)^{-n} = \frac{a^{-n}}{b^{-n}} = \frac{b^n}{a^n}$$

P)
$$\left(\frac{x}{2}\right)^{-3} =$$

SCIENTIFIC NOTATION. A number is written in scientific notation when it is in the form

 $a \times 10^n$ where $1 \le |a| \le 10$ and n is an integer.

To change a decimal to scientific notation:

Step 1: Count the number N of decimal places that the decimal point must be moved in order to get only one digit (a) in front of the decimal.

Step 2: If you had to move the decimal to the left (you started with a large number with several value places before the decimal), then your exponent is positive $(a \times 10^N)$. If you had to move the decimal to the right (you started with a decimal that had only 0 in front of it), then your exponent will be negative $(a \times 10^{-N})$

EXAMPLES: Write the following in scientific notation.

$$Q)238,400 =$$

R)
$$0.071 =$$

REVERSING THE PROCESS (going from scientific notation to decimal notation):

Look at the exponent on the 10. If the *exponent is* negative, move the decimal N spaces to the *left* (toward the negative end of the number line). If the *exponent is positive*, move the decimal N spaces to the *right* (toward the positive end of the number line).

EXAMPLES: Write the following in decimal notation.

S)
$$-2.8 \times 10^4 =$$

T)
$$1.49 \times 10^{-5} =$$

MULTIPLYING & DIVIDING WITH SCIENTIFIC NOTATION.

Follow the usual rules of exponents, except separate the pieces. Simplify the numbers, then add/subtract the exponents on the 10's.

EXAMPLES:

U)
$$(3 \times 10^2)(2 \times 10^4) =$$

V)
$$(3.2 \times 10^{-3})(4.8 \times 10^{-4}) =$$

EXAMPLES:

$$W)\frac{2.8\times10^9}{1.4\times10^4} =$$

X)
$$\frac{3.6 \times 10^3}{7.2 \times 10^{-1}} =$$

Homework:

Pg. 351: # 19-24, 31, 33, 37, 41, 45, 51, 57, 65, 69, 71, 81, 83, 85, 87, 91, 101, 105, 115, 117, 121, 131.