Objectives:

- ~ Factor by Grouping
- ~ Factor with leading coefficients of not 1

Lesson 5.4: GCF and Factor by Grouping

Factor out the GCF: Remember, Sometimes the GCF is a Binomial. Factor the Binomial out.

1.
$$4x(x-3) + 5(x-3)$$

$$2. 2x(3x-2) - 3(3x-2)$$

Factor by Grouping (4 terms)

- Step 1: Group the terms with common factors.

 Sometimes it will be necessary to rearrange the terms.
- Step 2: In each grouping, factor out the common factor.
- Step 3: Factor out the common factor that remains (usually a Binomial).
- Step 4: Check your answer.

Lesson 5.4: GCF and Factor by Grouping

Factor by Grouping Examples:

3.
$$x^3 + 3x^2 + 2x + 6$$

Factor by Grouping Examples:

4.
$$6x^2 + 9x - 10x - 15$$

We can use Factor by Grouping to factor trinomials that have a leading coefficent of something other than 1.

We just need to fill out the chart like normal and then put the two numbers "m" and "n" as the middle term - just split up.

Remember to take out the GCF first!

FACTORING BY GROUPING:

ax^2	<u>n</u> х
<u>m</u> x	C

Step 1: Find the value of A(C)

Step 2: Find the pair of integers whose product equals ac, and whose sum equals b. Call these integers m and n, where mn = ac and m + n = b

Step 3: Rewrite the expression as: $ax^2 + bx + c = ax^2 + mx + nx + c$

Step 4: Factor the new expression by grouping.

Step 5: CHECK YOUR ANSWER!

Examples: by grouping

5.
$$4x^2 + 7x + 3$$

Examples: by "Box" method

5. $4x^2 + 7x + 3$

Examples:

6. $2x^2 + 7x + 6$

Examples: Remember GCF!

7.
$$4x^2 - 2x - 6$$

Examples:

8. $2x^6 - 32$

Examples:

9. $8x^4 - 128$

Objectives:

- ~ Factor by Grouping
- ~ Factor with leading coefficients of not 1

Can you?

Assignment 19

Due a the beginning of next class