Lesson 19: Factoring Day 2

Objectives:

- ~ Factor by Grouping
- ~ Factor with leading coefficients of not 1

Lesson 5.4: GCF and Factor by Grouping

Factor out the GCF: Remember, Sometimes the GCF is a Binomial. Factor the Binomial out.

1.
$$4x(x-3) + 5(x-3)$$

 $(x-3)(4x+5)$

$$(3x-2)(2x-3)$$

Factor by Grouping (4 terms)

- Step 1: Group the terms with common factors.

 Sometimes it will be necessary to rearrange the terms.
- Step 2: In each grouping, factor out the common factor.
- Step 3: Factor out the common factor that remains (usually a Binomial).
- Step 4: Check your answer.

Factor by Grouping Examples:

3.
$$x^3 + 3x^2 + 2x + 6$$

 $x^2(x+3) + 2(x+3)$

$$(x+3)(x^2+2)$$

Factor by Grouping Examples:

4.
$$6x^2 + 9x - 10x - 15$$

= $3x(2x+3)-5(2x+3)$

$$=$$
 $(2x+3)(3x-5)$

We can use Factor by Grouping to factor trinomials that have a leading coefficent of something other than 1.

We just need to fill out the chart like normal and then put the two numbers "m" and "n" as the middle term - just split up.

Remember to take out the GCF first!

Lesson 19: Factoring Day 2

FACTORING BY GROUPING:

ax^2	<u>n</u> х
<u>m</u> x	C

Step 1: Find the value of A(C)

Step 2: Find the pair of integers whose product equals ac, and whose sum equals b. Call these integers m and n, where mn = ac and m + n = b

Step 3: Rewrite the expression as: $ax^2 + bx + c = ax^2 + mx + nx + c$

Step 4: Factor the new expression by grouping.

Step 5: CHECK YOUR ANSWER!

Examples: by grouping

5.
$$4x^{2} + 7x + 3$$

= $4x^{2} + 4x + 3x + 3$
= $4x(x+1) + 3(x+1)$
= $(X+1)(4x+3)$

$$\frac{4.3}{4+3} = 12 \text{ AC}$$

Examples: by "Box" method

5.
$$4x^2 + 7x + 3$$

$$(4x+3)(x+1)$$

	~	- 1
4x +	4*2	4×
3	31	3
	3.	4.=12
	3 +	4 =7

Examples:

6.
$$2x^{2} + 7x + 6$$

 $2x^{2} + 4x + 3x + 6$
 $= 2x(x+2) + 3(x+2)$
 $= (2x+3)(x+2)$
 $= (x+2)(x+2)$
 $= (x+2)(2x+3)$

Examples: Remember GCF!

7.
$$4x^{2} - 2x - 6$$

= $2(2x^{2} - x - 3)$
= $2\begin{bmatrix} 2x^{2} + 2x - 3x - 3 \end{bmatrix}$
= $2\begin{bmatrix} 2x(x+1) - 3(x+1) \end{bmatrix}$
= $2(x+1)(2x-3)$

Diff of perfect 1s.

Examples:

8.
$$2x^{6} - 32$$

$$2(x^{6} - 16)$$

$$2(x^{3} + 4)(x^{3} - 4)$$

Examples:

9.
$$8x^4 - 128$$

 $8(x^4 - 16)$
 $8(x^2 + 4)(x^2 - 4)$
 $8(x^2 + 4)(x^2 - 4)$
 $8(x^2 + 4)(x - 2)$

Objectives:

- ~ Factor by Grouping
- ~ Factor with leading coefficients of not 1

Can you?

Assignment 19

Due a the beginning of next class