By the end of the lesson, we will be able to:

~Simplify Radical Expressions

What is a Square Root?

What is its symbol?

Definition of a Square Root:

For any real numbers a and b, if $a^2 = b$, then a is a square root of b.

Example: If $13^2 = 169$, then 13 is the square root of 169.

Parts of a Radical:

Lesson 20: Roots of Real Numbers & Radical Expressions

Since finding the square root of a number and squaring a number are inverse operations, it makes sense that the inverse of raising a number to the *nth* power is finding the *nth* root of the number.

Powers	Factors	Roots
$4^3 = 64$	$4 \cdot 4 \cdot 4 = 64$	4 is a cube root of 64
$2^4 = 16$	$2 \cdot 2 \cdot 2 \cdot 2 = 16$	2 is a fourth root of 16
$3^5 = 243$	$3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 243$	3 is the fifth root of 243
$a^n = b$	$a \cdot a \cdot a \cdot \cdots \cdot a = b$	a is the nth root of b

For any real numbers a and b, and any positive integer n, if $a^n = b$, then a is an nth root of b.

What is the square root of 49?

Hint: What number multiplied by itself equals 49?

When there is more than one real root, the nonnegative (or positive) root is the called the **principal root**. We use this when there is nothing in front of the square root sign.

$$\sqrt{49} = 7$$
 $\pm \sqrt{49} = \pm 7$ $-\sqrt{49} = -7$

Lesson 20: Roots of Real Numbers & Radical Expressions

Real <i>nth</i> Roots of b, $\sqrt[n]{b}$, or $-\sqrt[n]{b}$				
<u>n</u>	<u>b>0</u>	<u>b<0</u>	<u>b=0</u>	
even	one positive root one negative root	no real roots	one real root, O	
odd	one positive root no negative roots	no positive roots one negative root		

What is:

$$-\sqrt{16}$$

$$\sqrt{-100}$$

$$\sqrt[3]{-27}$$

Example 1 ~ Find each root:

a.)
$$\pm \sqrt{169x^4}$$
 b.) $-\sqrt[2]{(8x-3)^4}$

Lesson 20: Roots of Real Numbers & Radical Expressions

Example 1 ~ Find each root:

c.)
$$\sqrt[3]{125a^6}$$

d.)
$$\sqrt[3]{-m^3n^3}$$

Example 1 ~ Find each root:

e.)
$$\sqrt{x^2 + 6x + 9}$$

f.)
$$\sqrt{x^2 - 2xy + y^2}$$

When you take the *nth* root of an even power and an odd power is the result, you must take the absolute value of the result to ensure that the value is nonnegative.

** The back of the book has absolute values, but we don't really care. We are just going to assume that all variables are positive. **

Example 2 ~ Find each root:

a.)
$$\sqrt[4]{(an)^4}$$

b.)
$$\sqrt[6]{(xy^2)^6}$$

c.)
$$\sqrt[6]{(3-y^2)^{18}}$$

By the end of the lesson, we will be able to:

~Simplify Radical Expressions

Can you do these things?

Homework:

Assignment 20