By the end of the lesson, we will be able to:

~ Simplify Imaginary and Complex Numbers.

We already know that the square root of a negative number is not a real number. This is because there is no real number that satisfies the equation $x^2 = -1$.

However, about 400 years ago, a French mathematician named René Descartes suggested that a new number be invented, an imaginary number, represented by the letter *i*, which is the solution to that equation.

Definition of *i*: $\sqrt{-1} = i$ and $i^2 = -1$

Expanding the set of numbers to include imaginary numbers allows us to simplify expressions and solve equations that were not possible using only real numbers.

Whenever you see a negative number under a radical, take it out of the radical and write it as an i on the outside.

even
root (index)
$$\sqrt{-9} = \sqrt{-1.9} = \sqrt{1.9} = \sqrt{(3)}$$

Remember to remove the i's first.

a.)
$$\sqrt{-81} = i\sqrt{81}$$

= $9i$

b.)
$$\sqrt{-121x^5}$$

$$= \sqrt{121x^5}$$

Remember to remove the i's first.

c.)
$$\sqrt{-8n^2} = i\sqrt{8n^2}$$

$$= 2ni\sqrt{2}$$

$$= 2ni\sqrt{2}$$

Remember to remove the i's first.

e.)
$$\sqrt{-\frac{25}{121}} = \sqrt{\frac{25}{121}}$$

$$= \sqrt{\frac{25}{121}}$$

$$= \sqrt{\frac{25}{121}}$$

$$= \sqrt{\frac{5}{11}}$$

f.)
$$\sqrt{-\frac{252}{4}} = \sqrt{\frac{252}{4}}$$

= $\sqrt{\frac{252}{4}} = \sqrt{\frac{252}{252}}$
= $\sqrt{\frac{252}{4}} = \sqrt{\frac{252}{252}}$
= $\sqrt{\frac{2.2}{3.3.7}} = \sqrt{\frac{252}{252}}$
= $\sqrt{\frac{2.2}{3.3.7}} = \sqrt{\frac{252}{252}}$
= $\sqrt{\frac{252}{4}} = \sqrt{\frac{252}{252}}$

Remember to remove the i's first. (2 = -1

g.)
$$\sqrt{-5} \cdot \sqrt{-20}$$
= $i \sqrt{5} \cdot i \sqrt{20}$
= $i^2 \sqrt{5 \cdot 20} = i^2 \sqrt{100}$
= $10 i^2 = 10(-1)$
= $[-10]$

h.)
$$(-3\sqrt{-5})^2$$

= $(-3i\sqrt{5})^2$
= $(-3)^2i^2(\sqrt{5})^2$
= $(-45)^2i^2(\sqrt{5})^2$

What is the pattern in the powers of i?

$$i^{0} = 1$$

$$i^{1} = i$$

$$i^{2} = -1$$

$$i^{3} = (2 \cdot i) = -i$$

$$i^{4} = i \cdot (2 \cdot i) = -i \cdot (2 \cdot i)$$

$$i^{5} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{6} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{7} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (1 \cdot i) = (1 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (2 \cdot i) = (2 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (2 \cdot i) = (2 \cdot i)$$

$$i^{103} = i \cdot (2 \cdot i) = (2 \cdot i)$$

$$i^{103} = (2 \cdot i) = (2 \cdot i)$$

$$i^{103} = (2 \cdot i) = (2 \cdot i)$$

$$i^{103} = (2 \cdot i)$$

$$i^{$$

Lesson # 24: Complex Numbers (5.9)

Since the pattern repeates every 4, we should

- Divide the power on the "i" by 4.
- The remainder will tell us which of the 1st 4 it is like.

$$i^{0} = i$$

$$i^{1} = i$$

$$i^{2} = -1$$

$$i^{3} = -1$$

Memorize!

A <u>complex number</u> is an expression of the form a + bi, which means it has a real part (a) and an imaginary part (bi). When simplifying expressions with complex numbers is similar to simplifying polynomials, but wherever there is an i^2 , change it to -1.

a.)
$$3i \cdot 6i^{2}$$

= $3i \cdot 6(-1)$
= $3i \cdot (-4)$
= $-18i$

b.)
$$(2i \cdot 3i)^2$$

= $(6i^2)^2$
= $(6(-1))^2$ = $(-6)^2$
= (36)

c.)
$$3(-5-2i) + 2(-3+2i)$$

$$= -15-6i - 6 + 4i$$

$$= -21-2i$$

d.)
$$(7+5i) + (-4-6i)$$

= $7+5i - 4 - 6i$
= $3-i$

e.)
$$i(5i) + i(7 - i)$$

= $5i^2 + 7i - i^2$
= $5(-i) + 7i - (-1)$
= $-5 + 7i + 1$
= $-4 + 7i$

f.)
$$(2+3i)(4-5i)$$

= $8-10i+12i-15i^2$

$$= 8 + 2i + 15$$

= $23 + 2i$

g.)
$$(7-i)(4+2i)(5+2i)$$

= $(28+14i-4i-2i^2)(5+2i)$
= $(28+10i+2)(5+2i)$
= $(30+10i)(5+2i)$
= $(30+10i)(5+2i)$
= $(30+10i)(5+2i)$

h.)
$$(\sqrt{5} + 2i)^2 = (\sqrt{5} + 2i)(\sqrt{9} + 2i)$$

$$= 5 + 2i\sqrt{9} + 2i\sqrt{5} + 4i^2$$

$$= 1 + 4i\sqrt{5}$$

By the end of the lesson, we will be able to:

~ Simplify Imaginary and Complex Numbers.

Can you?

Lesson # 24: Complex Numbers (5.9)

Homework:

Assignment #24