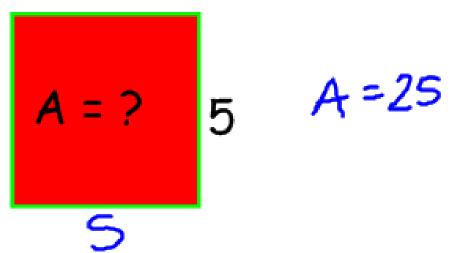
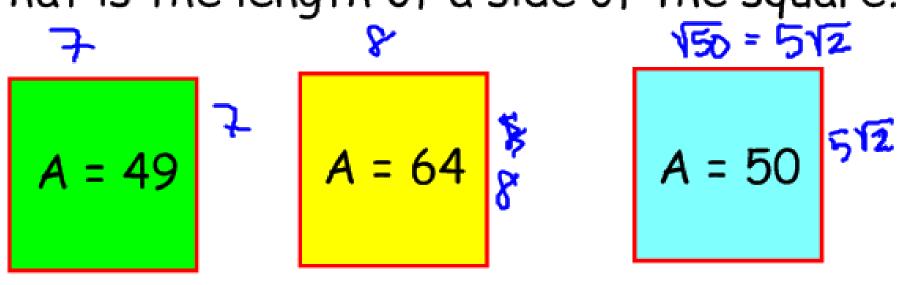

By the end of the lesson, we will be able to:

~ Solve equations with radicals in them.



What is a radical?



What is an example of a Radical Equation?

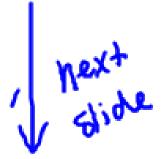
What is the area of the square?

What is the length of a side of the square?

Steps for solving radical equations:

- Isolate the radical. (If there is more than one radical, isolate the biggest radical expression.)
- Square both sides of the equation. (Or cube if radical is cube root, etc.)
- If there are additional radicals left, repeat steps 1 and 2.
- 4. Isolate the variable.
- 5. Check your solution. (Some solutions may be extraneous.)

do-esn't work in original problem


Examples:

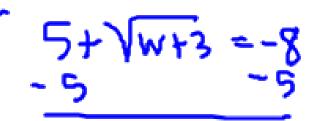
a.)
$$(\sqrt{x})^{2} = (4)^{2}$$

b.)
$$(\sqrt[3]{x} - 20)^3 = (5)^3$$

 $(\sqrt[3]{x} - 20) = (5)^3$
 $(\sqrt[3]{x} - 20) = (125)$
 $(\sqrt[3]{x} - 20) = (\sqrt[3]{x} - 20)$

c.)
$$5 + \sqrt{h} + 1 = 8$$

 $(\sqrt{h} + 1)^{2} = (3)^{2}$
 $h + 1 = 9$
 $(\sqrt{h} - 8)$


d.)
$$5 + \sqrt{w+3} = -8$$

$$\frac{d}{-5} + \sqrt{w+3} = -8$$

$$(\sqrt{W+3})^{2}(-13)^{2}$$

$$W+3 = 169$$

No Sol.

extraneous solution

Check:

Examples:

e.)
$$2\sqrt{m-3} = 7$$

$$\left(\sqrt{m-3}\right)^2 \left(\frac{7}{2}\right)^2$$

$$M-3 = \frac{49}{4} + \frac{3}{1}$$

Check:

Examples:

$$f.)(3y-1)^{\frac{1}{3}}-2=0$$

$$\frac{\sqrt[3]{3y-1} - 2 = 0}{+2 + 2}$$

$$(\sqrt[3]{3y-1})^3 = (2)^3$$

Examples:

$$g.) (2n+1)^{\frac{1}{4}} + 5 = 2$$

$$\sqrt[4]{2n+1} +5 = 2$$

$$4\sqrt{2n+1} = -3$$

NOSolution

* even roots
= neg

>> no sol.

X odd routs = Aeg <u>could</u> have an answer

Examples:

h.) Solve for L:
$$T = 2\pi \sqrt{\frac{L}{g}}$$

$$\frac{2\pi}{2\pi}$$

$$\left(\frac{1}{2\pi}\right)^2 = \left(\sqrt{\frac{L}{g}}\right)^2$$

$$\left(\frac{1}{2\pi}\right)^2 = \left(\sqrt{\frac{L}{g}}\right)^2$$

$$\left(\frac{1}{4\pi^2}\right)^2 = \left(\sqrt{\frac{L}{g}}\right)^2$$

$$\left(\frac{1}{4\pi^2}\right)^2 = \left(\sqrt{\frac{L}{g}}\right)^2$$

$$\left(\sqrt{\frac{L}{g}}\right)^2 = \left(\sqrt{\frac{L}{g}}\right)^2$$

Examples: biggest

i.)
$$\sqrt{x+21}-1=\sqrt{x+12}$$

$$\left(\sqrt{x+21}\right)^{2} = \left(\sqrt{x+12} + 1\right)^{2}$$

$$\frac{8}{2} = \frac{2\gamma_{X+12}}{2}$$

Examples: biggest

$$\mathbf{j.)} \sqrt{x-1} = \sqrt{x} - \sqrt{5}$$

$$+\sqrt{5}$$

$$X + 4 + 2\sqrt{5x-5} = X$$

-x -4 -4

$$2\sqrt{5x-5} = -4 \\ -2 \\ \sqrt{5x-5} = -2$$

No Solution

By the end of the lesson, we will be able to:

~ Solve equations with radicals in them.

Can you?

Homework:

Assignment 26

Happy Holidays!

