By the end of the lesson, we will be able to: x^2

- ~Solve Quadratic Equations by Factoring (Find Roots)
- ~Take the Roots and get the orignial Quadratic Equation

If the product of two numbers is zero, what do you know about the numbers?

Why?

Zero Product Property: $\underbrace{\text{If } a \cdot b = 0}_{\text{then either }}$, then either $\underline{a = 0}$ or $\underline{b = 0}$, or both.

then either a=0 or b=0, or both.

This property can be used to solve **quadratic equations**. Quadratic means the variable is squared (x^2). Quadratic equations can have up to 2 **solutions**. Sometimes the solutions are called **roots** or **zeros**.

Steps for solving quadratic equations by factoring:

- 1. Move all terms to one side of the equation so the equation is set to zero.
- 2. Factor the polynomial.
- 3. Set each factor equal to zero.
- 4. Solve each new equation.

a.)
$$x^2 - 3x - 28 = 0$$

 $(\chi - 7)(\chi + 4) = 0$
 $\chi - 7 = 0$
 $\chi - 7 = 0$
 $\chi + 4 = 0$
 $\chi - 4 = 0$

$$X=7 X=-4$$

 $X=7,-4$

Steps for solving quadratic equations by factoring:

- Move all terms to one side of the equation so the equation is set to zero.
- 2. Factor the polynomial.
- 3. Set each factor equal to zero.
- 4. Solve each new equation.

Example 1:
b.)
$$x^2 + 4x = 12$$

 $-12 - 12$
 $x^2 + 4x - 12 = 0$
 $(x+6)(x-2)=0$
 $x + 6 = 0$
 $x + 6 = 0$
 $x - 2 = 0$

c.)
$$3m^2 - 13m = 10$$

$$-10 - 10$$

$$3m^2 - 13m - 10 = 0$$

$$3m^2 - 15m + 2m - 10 = 0$$

$$3m(m-5) + 2(m-5) = 0$$

$$(m-5)(3m+2) = 0$$

$$\begin{array}{ccc}
M-5=0 & 3m+2=0 \\
+5+5 & -2-2 \\
\hline
M=5 & 3m=-2 \\
\hline
3m=-2 & 3
\end{array}$$

d.)
$$3m^2 - 13m = -10$$

e.)
$$3x^2 + 12x = 0$$

 $3x(x+4)=0$

e.)
$$3x^{2} + 12x = 0$$

 $3x(x+4)=0$
 $3x = 0$ $x+4=0$
 $3x = 0$ $x+3=0$
 $3x = 0$ $x+3=0$
 $3x = 0$ $x+3=0$
 $3x = 0$ $x=3=0$
 $3x = 0$ x

g.)
$$16x^{2} = 49$$

$$-49 - 49$$

$$16x^{2} - 49 = 0$$

$$(4x + 7)(4x - 7) = 0$$

$$4x + 7 = 0$$

$$4x + 7 = 0$$

$$4x - 7 = 0$$

Example 1: *Take note of the powers...*

h.)
$$35x^3 + 16x^2 = 12x$$

$$\frac{-12x - 12x}{35x^3 + 16x^2 - 12x} = 0$$

$$x (35x^2 + 16x - 12) = 0$$

$$x (35x^2 + 30x - 14x - 12) = 0$$

$$x (7x + 6) - 2(7x + 6) = 0$$

$$x (7x + 6)(5x - 2) = 0$$

$$x = 0$$

You can use the reverse process to <u>create</u> quadratic equations when given the solutions.

How to write a quadratic equation when given the solutions:

- 1. Set x equal to each solution.
- 2. If the solution is a fraction, multiply both sides by the denominator so you have integers.
- 3. Move the term over so the equation is set to zero.
- Write the expression in parentheses. Repeat for the other solution(s).
- Multiply the expressions. (Usually this means you will FOIL).

Example 2: Write a quadratic equation that has the given roots.

a.) 7, -3

$$X=7$$
 $X=-3$
 $-2-7$ $+3+3$
 $X-7=0$ $X+3=0$
 $(x-7)(x+3)=0$
 $X^2+3x-7x-21=0$
 $X^2-4x-21=0$

b.)
$$-5$$
, 5

Example 2: Write a quadratic equation that has the

given roots.

C.)
$$-\frac{2}{3}$$
, $-\frac{4}{5}$
 $1x = -\frac{2}{3}$, $3x = -\frac{4}{5}$
 $3x = -\frac{2}{3}$, $3x = -\frac{4}{5}$
 $3x = -\frac{4}{5}$
 $3x + 2 = 0$
 $3x + 2$
 $3x + 2 = 0$
 $3x + 2$
 $3x + 4 = 0$
 $3x + 2$
 $3x + 4 = 0$
 $3x + 2$
 $3x + 4 = 0$
 $3x + 4$
 3

1.) 0, 6

$$X=0$$
 $\frac{-6-6}{-6-6}$
 $X=0$ $\frac{-6-6}{x-6}$
 $(x)(x-6)=0$
 $(x^2-6x=0)$

Example 2: Write a quadratic equation that has the given roots.

e.)
$$-3i$$
, $3i$ f.) 4 , $\frac{1}{3}$
 $x = -3i$ $x = 3i$
 $+3i + 3i$
 $x + 3i = 0$ $x - 3i = 0$
 $(x + 3i)(x - 3i) = 0$

By the end of the lesson, we will be able to:

- ~Solve Quadratic Equations by Factoring (Find Roots)
- ~Take the Roots and get the original Quadratic Equation

CAN YOU?

Homework:

Assignment 29

+ Test 7 Review

