By the end of the lesson, we will be able to:

~ Solve quadratic equations by completing the square.

Look for a pattern...

Multiply:

a.)
$$(x + 9)^2$$

= $(x+9)(x+9)$
= $x^2+9x+9x+81$
= $x^2+18x+81$

b.)
$$(x + 12)^2$$

 $= (x+12)(x+12)$
 $= x^2 + 24x + 144$

Look for a pattern...

Multiply:

c.)
$$(x + 2)^2$$

= $(x+2)(x+2)$
= $x^2 + 4x + 4$
d.) $(x + 5)^2$
= $x^2 + 10x + 25$

Have you noticed a pattern between the middle term and the last term? $C = \left(\frac{b}{2}\right)^2$

Have you noticed a pattern between the middle term and the last term?

$$ax^2 + bx + c$$
, where $c = \left(\frac{b}{2}\right)^2$

Find the missing part (k).

Then put in
$$(x + \frac{1}{2})^2$$
 form.

a.)
$$x^2 + 4x + k$$

$$=(2)^{2}$$

$$k = 4$$

$$(x+2)^2$$

$$\frac{b}{a}$$
)² form. $b = -6$
(b.) $x^2 - 6x + k$
 $K = (\frac{-6}{a})^2$

$$=(-3)^2$$

$$(X-3)^2$$

Steps for Solving Quadratics by Completing the Square:

 $ax^2+bx+C=0$ Step 0: Divide everything by "a" if "a" is something other than 1. Step 1: | Move the constant to the right side of the equation. > no x's Step 2: Identify "b". Divide "b" by 2. Square $\left(\frac{b}{2}\right)$. Add $\left(\frac{b}{2}\right)^2$ to both sides Step 3: of the equation.

Steps for Solving Quadratics by Completing the Square:

Step 4:	Factor the left side. Hint: It will look
	like $(x + \frac{b}{2})^2 =$
Step 5:	Combine terms on right side. (You
	are adding the numbers together).
Step 6:	Solve for x. Hint: Start by taking the
	square root of both sides.
	Remember to put (\pm) with the square
	root.

Example 1:
$$x^2 - 6x = 40$$

 $x^2 - 6x + 9 = 40 + 9$
 $(x-3)^2 = 49$
 $\sqrt{(x-3)^2} = \pm \sqrt{49}$
 $(x-3)^2 = \sqrt{49}$
 $(x-3)^$

Example 2: $x^2 + 7x - 17 = 0$

$$X^{2} + 7x + \frac{49}{4} = 17^{4} + \frac{49}{4}$$

$$\left(x + \frac{7}{2}\right)^{2} = 6^{8} + \frac{49}{4}$$

$$\left(x + \frac{7}{2}\right)^{2} = \sqrt{117}$$

$$\left(x + \frac{7}{2}\right)^{2} = 2 \sqrt{117}$$

$$x + \frac{7}{2} = \pm 2 \sqrt{117}$$

$$x + \frac{7}{2} = \pm 3 \sqrt{15}$$

$$X = -\frac{7}{2} \pm \frac{3\sqrt{13}}{2}$$
or
$$X = -7 \pm 3\sqrt{13}$$

$$X = -7 \pm 3\sqrt{13}$$

Example 3:
$$x^2 + 8x + 20 = 0$$

$$\frac{-2}{b^{2}} = 4$$

$$\frac{b^{2}}{2} = 16$$

$$\frac{(\frac{b}{2})^{2}}{(\frac{b}{2})^{2}} = 16$$

$$\frac{(\frac{b}{2})^{2}}{(\frac{b}{2})^{2}} = 16$$

$$\frac{-20^{2} - 20^{2}}{x^{2} + 8x + 16^{2}} = -20 + 16$$

$$(x + 4)^{2} = 1 - 4$$

$$x + 4 = \pm 2i$$

$$x + 4 = -4$$

$$x - 4 + 2i$$

Example 5: $x^2 + 6x + 9 = 0$

$$x^{2} + 6x + 9 = -9 + 9$$

$$\sqrt{(x+3)^{2}} = 40$$

$$X+3=\pm 0$$
 $-3-3$
 $X=-3$
 $X=3$

Example 6:
$$\frac{ax^2}{4} + \frac{bx}{4} + \frac{c}{4} = \frac{0}{4}$$

$$\left(\frac{b}{2}\right)^2 = \frac{b^2}{4a^2}$$

$$\frac{(^{2} + \frac{b}{a} \times + \frac{c}{a} = 0)}{(x^{2} + \frac{b}{a} \times \frac{b^{2}}{4a^{2}} = -\frac{c}{a} \times \frac{b^{2}}{4a^{2}} = -\frac{b^{2}}{4a^{2}} + \frac{b^{2}}{4a^{2}} + \frac$$

$$\sqrt{\left(\chi + \frac{b}{2a}\right)^2} = \frac{1}{4a^2} \sqrt{\frac{b^2 - 4ac}{4a^2}}$$

$$X + \frac{b}{2a} = \frac{\pm \sqrt{b^2 - 4ac}}{2a}$$
 $\frac{-\frac{b}{2a}}{2a} = \frac{-\frac{b}{2a}}{2a}$

$$X = -b \pm \sqrt{b^2 - 4ac}$$

By the end of the lesson, we will be able to:

~ Solve quadratic equations by completing the square.

Cardons

Lesson 30 (6.3): Completing the Square

Homework:

Assignment 30

Additional examples: (with A=something other than 1.

$$4x^2 - 5x - 21 = 0$$

$$2x^2 - 7x + 12 = 0$$