By the end of the lesson, we will be able to:

- ~ Solve quadratic inequalities.
- ~ Show the solution of a quadratic inequality on a line graph.
- Write the solution of a quadratic inequality.

Let's start by reviewing how to solve a quadratic equation.

- 1. We can solve by factoring.
- 2. We can solve by completing the square.
- 3. We can solve by using the quadratic formula.

Review - List the steps to solve quadratic equations by factoring.

Steps for solving quadratic equations by factoring:

- Move all terms to one side of the equation so the equation is set to zero.
- 2. Factor the polynomial.
- 3. Set each factor equal to zero.
- 4. Solve each new equation.

Examples:

a.)
$$x^2 - 3x - 28 = 0$$
 b.) $x^2 + 4x = 12$

Examples:

a.)
$$x^2 - 3x - 28 = 0$$
 b.) $x^2 + 4x = 12$

Review - List the steps to solve quadratic equations by using the quadratic formula.

Steps to solve using the Quadratic Formula:

- Set the equation equal to zero. (MUST be set to zero, not another number.)
- 2. Identify the values of **a**, **b**, and **c** from the equation.
- 3. Substitute a, b, and c into the quadratic formula.
- Simplify the expression using the order of operations and rules for simplifying radicals.
- 5. If the simplified expression has a radical or i, then write it as one expression with ±.
 If there is no radical or i, then split into two expressions (+ and –) and evaluate each.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
The QUADRATIC FORMULA.

This is a formula that allows you to solve <u>any</u> quadratic equation:

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Memorize this!!!

Let's do an example.

Solve the following quadratic equation by using the quadratic formula.

$$x^2 - 7x = 18$$

a =

b=

C =

Now we can start on solving quadratic inequalities.

Steps to solve quadratic inequalities:

- Set the inequality to zero, if necessary.
- Solve the related equation (Factor) to find the critical points.
- Graph the critical points on a number line.
- Test a value from each region in the inequality.
 (Plug in, see if it's true or false.)
- Use the graph to write the solution set for the inequality (compound inequality).

Example 1:

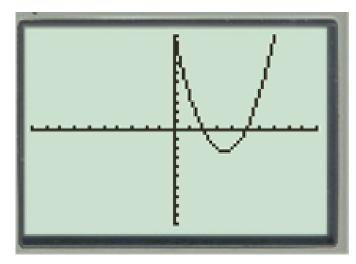
Solve the inequality $x^2 - 3x - 10 > 0$

Example 2:

Solve the inequality $x^2 - x - 12 > 0$

Example 3:

Solve the inequality
$$x^2 + 9x + 14 \le 0$$


Example 4:

Solve the inequality

$$(x+5)(x+1)(x-4)(x-6) > 0$$

How to use your calculator to solve:

- Step 1: Enter equation into "y=". (Must be set to 0.)
- Step 2: Graph.
- Step 3: Find the "zeros".
- Step 4: Put these points on your number line as your critical values.
- Step 5: Test your critical points. (Where is it positive? Where is it negative?)
- Step 6: Write your answers as an inequality.

Example 5: Use your calculator

Solve the inequality $5x^2 + 10 < 27x$

Example 6: Use your calculator

Solve the inequality $x^3 - 13x + 12 > 0$

By the end of the lesson, we will be able to:

- ~ Solve quadratic inequalities.
- ~ Show the solution of a quadratic inequality on a line graph.
- Write the solution of a quadratic inequality.

Can you?

Homework:

Assignment 32

