Objectives:

- ~ Graph Exponential equations and functions
 - * Horizontal Shift
 - * Vertical Shift
 - * Reflections
- ~ Evaluate Exponential expressions
- ~ Solve story problems

In quadratic functions, x^2 , the base x is variable, and the exponent 2 is constant.

However, In **exponential functions**, the base is constant and the exponent is variable. The exponential parent function is $y = b^x$ where b is a positive number other than 1.

Example of an exponential graph...

Exponential graphs level off and approach a line called an asymptote.

- For $y = b^x$, the asymptote is the x-axis, which is the horizontal line _____
- Since the graph never quite levels off completely, the range for $y = b^x$ is ______
- Since the graph goes outward forever in both directions, the domain is always

Special Points for $y = b^x$:

The first special point is _____

The next special point is _____

Other points:

Translations:

$$y = b^{x-h} + k$$

h affects _____ shift

k affects _____ shift

Horizontal asymptote: _____

Reflections

$$y = b^x$$

Normal parent graph

Direction:

$$y = b^{-1}$$

Flips the graph _____

Direction:

$$y = -b^x$$

Flips the graph _____

Direction:

$$y = -b^{-x}$$

Flips the graph _____

Direction:

Steps to Graph an Exponential Function:

- 1. Identify and graph the horizontal asymptote (HA).
- 2. Write down special points (0, 1) (1, b).
- Add the "h" value to the X's in your special points.
- 4. If "a" is negative (outside parentheses), make the "y" value in the special points negative. If "x" is negative (inside parentheses), make the "x" value in the special points negative.
 - ~~ This is our reflection step. ~~
- Add the "k" value to the Y's in your special points.
- 6. Plot the points and connect the dots.

(Remember arrows!)

The graph will always go horizontally along the asymptote.

Remember:

 Graph the first special point 1 space from the asymptote.

 Graph the second special point b spaces from the asymptote.

Example 1:

$$f(x) = 3^x$$

HA:_____

Domain:

Example 2:

$$g(x) = -5^{x-2}$$

HA:_____

Domain:

$\frac{\text{Example 3:}}{y = 2^{-x}}$

$$y = 2^{-x}$$

HA:__

Domain:

Example 4:

$$y = -4^{x+3} + 4$$

HA:_____

Domain:

The letter "e" is used to represent a special irrational constant:

 $e \approx 2.71828$

This number is often used as a base for exponential functions. (We will learn more about "e"in future lessons.)

(1, e)

(0, 1)

Graph of $y = e^x$

Example 5:

$$g(x) = e^{x-3} + 2$$

HA:_____

Domain:

Examples: Evaluate to 3 decimal places.

- a.) $e^{5.1}$
- b.) $e^{-1.2}$
- (c.) $e^{\frac{1}{3}}$

Real life situations involving exponential growth or decay can be modeled using the equation:

Exponential Growth:

$$y = Pe^{rt}$$

where y is final amount, P is initial amount (Principal), r is the growth rate, and t is time.

Examples:

A. Your parents put \$2000 in a college fund when you are born. The account pays 5% interest. How much do you have in the account when you turn 18?

Examples:

B. You would like to have \$15,000 for college on your 20 th birthday. How much would need to be deposited on your 15th birthday if the account pays 7.5% interest?

Objectives:

- ~ Graph Exponential equations and functions
 - * Horizontal Shift
 - * Vertical Shift
 - * Reflections
- ~ Evaluate Exponential expressions
- ~ Solve story problems

Can you?

Homework:

Assignment 43