Objectives:

- ~ Graph Exponential equations and functions
 - * Horizontal Shift
 - * Vertical Shift
 - * Reflections
- ~ Evaluate Exponential expressions
- ~ Solve story problems

In quadratic functions, x^2 , the base x is variable, and the exponent 2 is constant.

However, In **exponential functions**, the base is constant and the exponent is variable. The exponential parent function is $y = b^x$ where b is a positive number other than 1.

Example of an exponential graph...

Exponential graphs level off and approach a line called an asymptote.

- For $y = b^x$, the asymptote is the x-axis, which is the horizontal line $\underline{\mathsf{M}} = 0$
- Since the graph never quite levels off completely, the range for $y = b^x$ is $\underline{\mathsf{U}} > \underline{\mathsf{O}}$
- Since the graph goes outward forever in both directions, the domain is <u>always</u>.

Special Points for $y = b^x$:

The first special point is (0,1)

The next special point is (1,6)

Other points:

$$(2, b^2)$$
 $y=b^2$

Translations:

$$y = b^{x-h} + k$$

h affects Novizontal (left/Right)

k affects <u>Virtical</u> (w/down) hift

Reflections

$$y = b^x$$

Normal parent graph

Direction:

$$y = b^{-x}$$

Flips the graph over y-axis

Direction: mult x by-1

$$y = -b^x$$
 mult y^{by}
Flips the graph over x -axis
Direction:

$$y = -b^{-x}$$

Flips the graph owx 44 wis Direction: Mult y +x by-1

Steps to Graph an Exponential Function:

- 1. Identify and graph the horizontal asymptote (HA).
- 2. Write down special points (0, 1) (1, b).
- Add the "h" value to the X's in your special points.
- 4. If "a" is negative (outside parentheses), make the "y" value in the special points negative. If "x" is negative (inside parentheses), make the "x" value in the special points negative.
 - ~~ This is our reflection step. ~~
- Add the "k" value to the Y's in your special points.
- 6. Plot the points and connect the dots.

(Remember arrows!)

The graph will always go horizontally along the asymptote.

Remember:

 Graph the first special point 1 space from the asymptote.

Graph the second special point b spaces from the asymptote.

$$f(x) = 3^x$$
 h=0 K=0

Domain: 1

Range: 1/20

(0,1)

(1,3)

Example 2:
$$y=b^{(x-h)}+k$$

$$g(x) = -5^{x-2}$$

$$g(x) = -5^{x-2}$$
 h=2 K=0 a=4

 $HA: _{\mathbb{R}} = 0$ Domain: \mathbb{R}

Range: y < 0

$$\frac{SP}{(0,1)} = \frac{1}{2} (2,1) = \frac{1}{2} (2,-1)$$

$$(1,5) = \frac{1}{2} (3,-5)$$

Example 3: Slips from y-axis \rightarrow (-1)X $y = 2^{-x}$ $h=0 \quad k=0$ $y=2^{-x}$

HA: <u>U</u>>0

Domain: R

Range: 1,70

Example 4:

$$y = -4^{x+3} + 4$$

Domain: 1R Rande: 44 Range:

$$\frac{5P}{(0,1)} \xrightarrow{\text{N}^{2}} (-3,1) \xrightarrow{\text{N}^{2}} (-3,3)$$

$$(1,4) \xrightarrow{\text{N}^{2}} (-2,4) \xrightarrow{\text{N}^{2}} (-2,0)$$

The letter "e" is used to represent a special irrational constant:

$$e \approx 2.71828$$

This number is often used as a base for exponential functions. (We will learn more about "e"in future lessons.)

(1, e)

(0, 1)

Graph of
$$y = e^x$$

Example 5:

$$g(x) = e^{x-3} + 2$$

$$HA: \underline{y=2}$$

Domain:

Range:

$$\frac{SP}{(0,1)} \stackrel{k=3}{\rightarrow} (3,1) \stackrel{k=2}{\rightarrow} (3,3)$$

$$(1,e) \stackrel{h=3}{\rightarrow} (4,e) \stackrel{h=3}{\rightarrow} (4,42)$$

$$(1,13) \qquad (4,43)$$

Examples: Evaluate to 3 decimal places.

a.)
$$e^{5.1} = e^{(5.1)} = 164.022$$

b.)
$$e^{-1.2} = e^{(-1.2)} = .301$$

c.)
$$e^{\frac{1}{3}} = e^{\Lambda(1/3)} = 1.396$$

Real life situations involving exponential growth or decay can be modeled using the equation:

Exponential Growth:
$$y = Pe^{rt}$$
where y is final amount, P is initial amount
(Principal), P is the growth rate, and P is time.

5%
(Years)

Examples:

round 2 dec

$$y = Pe^{rt}$$

A. Your parents put \$2000 in a college fund when you are born. The account pays 5% interest. How much do you have in the account when you turn 18?

$$y = 2000 e^{(.05 * 18)}$$
 $y = 2000 e^{(.05 * 18)}$
 $y = 2000 * e^{(.05 * 18)}$
 $y = 4919.206$
 $45.4919.21$

Examples:

$y = Pe^{rt}$

B. You would like to have \$15,000 for college on your 20 th birthday. How much would need to be deposited on your 15th birthday if the account pays 7.5% interest?

$$P = \frac{150000}{(.075 \times 5)}$$

$$P = \frac{15000}{(.075 \times 5)}$$

$$P = \frac{15000}{(.075 \times 5)}$$

Objectives:

- ~ Graph Exponential equations and functions
 - * Horizontal Shift
 - * Vertical Shift
 - * Reflections
- ~ Evaluate Exponential expressions
- ~ Solve story problems

Can you?

Homework:

Assignment 43