By the end of the lesson, we will be able to:

- Understand Properties of Logarithms
 - * Change the base of log functions so we can evaluate them.
 - Expand Logarithmic Expressions.
 - Condense Logarithmic Expressions.

There are 4 properties of logarithms that are used to evaluate and rewrite log expressions.

The first Property of Logs is:

Change of Base Property: $\log_b x = \frac{\log x}{\log b}$ or $\log_b x = \frac{\ln x}{\ln b}$

Evaluate using a calculator and the change of base property: Change of Base Property: $\log_b x = \frac{\log x}{\log b}$ or $\log_b x = \frac{\ln x}{\ln b}$

A. $\log_4 12$ (trick: b is for bottom... it goes on bottom.)

B. $\log_{20} 26.3$

C. $\log_5 125$

Two more important Properties of Logs

Product Property: $\log_b(mn) = \log_b m + \log_b n$

Quotient Property: $\log_b \left(\frac{m}{n}\right) = \log_b m - \log_b n$

Expand each log expression

D.
$$\log_2(5xy)$$

E.
$$\ln\left(\frac{a}{b+1}\right)$$

F.
$$\log_3\left(\frac{pq}{6}\right)$$

G.
$$\ln\left(\frac{w}{xy}\right)$$

Numbers on top are added

Product Property: $\log_b(mn) = \log_b m + \log_b n$

Numbers on bottom are subtracted

Quotient Property:
$$\log_b \left(\frac{m}{n}\right) = \log_b m - \log_b n$$

Condense each log expression (- goes on bottom, + goes on top)

H.
$$\ln a + \ln b + \ln c$$

1.
$$\log 5 - \log x - \log(y - 4)$$

J.
$$\log_3 5 - \log_3 u + \log_3 6$$

The fourth Property of Logs is:

Power Property: $\log_b(m^p) = p \cdot \log_b m$

(Follow the previos rules and the power goes out front)

Expand each log expression using the Properties of Logs.

K.
$$\log_5\left(\frac{x^3}{y^2}\right)$$
 L. $\ln(a^5\sqrt{b})$

Power Property:
$$\log_b(m^p) = p \cdot \log_b m$$

Remember, fractions rewrite as roots ($x^{\frac{1}{2}} = \sqrt[2]{x}$)

Practice - Condense each log expression M.
$$2 \ln x + \frac{1}{2} \ln(z+2)$$
 N. $2 \log 5 + \frac{1}{3} \log u - 4 \log 3$

CHANGE OF PASE:

$$\log_{\mathbf{b}} x = \frac{\log x}{\log b} or \frac{\ln x}{\ln b}$$

$$\log_{b}(x)^{n} = n \cdot \log_{b}(x)$$

$$\log_b(xy) = \log_b x + \log_b y$$

$$\log_{b}\left(\frac{x}{y}\right) = \log_{b} x - \log_{b} y$$

By the end of the lesson, we will be able to:

- ~ Understand Properties of Logarithms
 - * Change the base of log functions so we can evaluate them.
 - * Expand Logarithmic Expressions.
 - * Condense Logarithmic Expressions.

CAN YOU???

Homework:

Assignment 45