By the end of the lesson, we will be able to:

- ~Find the Amplitude and Period
- ~Graph Sine and Cosine functions

Graphing Trigitunctions ons

$$y = a \sin b(x - h) + k$$

$$y = a \cos b(x - h) + k$$

Transformations of trig functions:

a gives amplitude (vertical stretch); if a is negative, the graph is flipped upside down

 \underline{b} gives \underline{period} (horizontal stretch), use the formula: $\underline{period} = \frac{2\pi}{b}$

h gives the horizontal shift, called phase shift

k gives the vertical shift

* This year, we are not going to worry about h and k.

Lesson 53: Graphing Trig Functions 13=.86 12=.71

Example 1: Graph the following trig function.

$oldsymbol{ heta}$ (radians)	0	<u>π</u> 6	$\frac{\pi}{4}$	<u>π</u> 3	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	<u>7π</u> 4	2π
$\cos heta$ (decimal)	1	13/2	12/2	之	0	-12/2	-1	-15/5	0	松	1

Critical Values: (ingreen) (のり (まの) (ガーリ(まれの)(なり,り)

<u>Domain:</u> 🔣

<u>Range:</u> - | = y = |

Reminder: Critical Values for Trig Functions are the

- * High points on the wave.
- * Low points on the wave.
- * The points where the wave crosses the x-axis.

Example 2: Graph the following trig function.

$oldsymbol{ heta}$ (radians)	0	<u>π</u> 6	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$\sin heta$ (decimal)	0	1/2	12/2	13/2	l	12/2	0	-12/2	7	-481/2	0

Critical Values: (00)(共1) (110)(2711)(2110)

Domain: Range: -1 = y = 1

Example 3: State the Amplitude and Period of

each function.

$$A = \{ a \}$$

$$a \ge y = 3 \cos \left(\frac{1}{2}\theta\right)$$

Now graph $y = \cos \theta$ with $y = 3\cos\left(\frac{1}{2}\theta\right)$ (Use Zoom #7) What changed? Stretched out Period

Example 3: State the Amplitude and Period of each function.

$$\partial.) y = 3\cos\left(\frac{1}{2}\theta\right)$$

3 times as tall

Period is twice as long

Now graph
$$y = \cos \theta$$
 with $y = 3\cos(\frac{1}{2}\theta)$ (Use Zoom #7)

What changed?

Example 3: State the Amplitude and Period of each function.

$$A = 2$$

$$P = 2\pi$$

$$P = 2\pi$$

$$P = 2\pi$$

Now graph
$$y = \sin \theta$$
 with $y = 2 \sin \theta$ (Use Zoom #7)
twice as talk
What changed? Same Period

Example 3: State the Amplitude and Period of

each function.

$$b.) y = 2 \sin \theta$$

Now graph
$$y = \sin \theta$$
 with $y = 2 \sin \theta$ (Use Zoom #7)

What changed?

Example 3: State the Amplitude and Period of each function.

c.)
$$y = 6 \cos\left(\frac{2}{3}\theta\right)$$

$$A = 6$$

$$P = \frac{2\pi}{2/3} = \frac{2\pi}{3} = \frac{3\pi}{3}$$

$$A = 6$$

$$A = 6$$

$$A = 6$$

$$A = 6$$

$$A = 7$$

$$A =$$

What transfomations are going to occur?

- · longer Period (1.5 times as long)

Steps to graph trig functions:

- 1. Identify amplitude and calculate the period.
- 2. If there is a vertical shift, sketch a line at y=k, along which the graph will oscillate.
- Identify the start and end points of one period, and then the middle and quarter points. Graph the 5 critical values.
- *(Remember, if there is a flip upside-down, then the y's of the critical points change signs.)*
 - Connect the critical points with a sine/cosine wave.
 - Continue the pattern for additional periods if there is space on the graph.

Steps to get critical values:

- Calculate the period. This will be your end point (the x-value).
- 2. Divide the period by 2. This will be your middle point (the x-value).
- 3. Divide the middle point value (from step 2) by 2. This will be the value between the start value and the middle value.
- 4. Take the values from step 2 and step 3 and add them together. This is your point between the middle point and the end point.

Example 3: State the Amplitude and Period of each function.

Lesson 53: Graphing Trig Functions 7:2=4 4 4 2=4

Example 4: Graph the following trig function. $y = 5 \cos 4\theta$ $y = 5 \cos 4\theta$

$$y = 5 \cos 4\theta$$

Amplitude: 5

Period: 217 7 Domain: 1R

Range: -54445

Critical Values: (0,5)(まの)(まっち)(ない)(まら)

Example 5: Graph the following trig function.

$$y = \frac{1}{2}\sin 2\theta$$

Amplitude: 👆

<u>Domain:</u> 🔫

By the end of the lesson, we will be able to:

- ~Find the Amplitude and Period
- ~Graph Sine and Cosine functions

Can you?

Homework:

Assignment 53