Linear Equations, Slope, and X & Y Intercepts

Objectives:

- ~ Find the Slope of a line
- ~ State whether an equation is Linear
- ~ Find x and y intercepts of a line
- ~ Graph a line by x and y intercepts

Linear Equations: when graphed, a linear equation forms a straight line.

Graph examples:

Graph Non-examples:

How can we tell from just an equation?

A linear equation needs to have one or two variables. They are usually "x" and "y". You cannot have more than two variables.

Standard Form: Ax + By = C, where A, B, C are Real numbers and A, B are not 0

How can we tell from just an equation?

A linear equation CANNOT have:

- Powers (exponents) on variables X, y
- Square roots on variables \sqrt{x} , \sqrt{y}
- Variables in the denominator of a fraction

Lesson 6: Section 2.2 & 2.3

Linear Equation Examples:

$$y = 5x - 7$$

$$3y = 4^2x$$

$$y = \frac{x}{2}$$

$$7n - 8m = 4 - 2m$$

$$3^2x + 4y = 1$$

$$42y + 21x = 14$$

Linear Equation Non-Examples:

Why do these not work? $420^{2} + 21x^{2} = 14$

$$y = 5xy - 10$$

$$42\sqrt{2} + 21\sqrt{x^2} = 14$$

$$y = \frac{3}{x} \int_{\mathbb{R}^d} v^{oktan}$$

$$3y = 4x + 3z$$

 3 yariables

$$3x^{2} + 4y = 1$$

$$70x^{2}$$

$$8m = 4 - 2m^2$$

Your turn: Linear Equation or not?

a.)
$$y = 3x + x$$
 linear

b.)
$$x = \frac{1}{y}$$
 non-Linear, divided by variable

c.)
$$4y = 3x + yx$$
 non-linear, mult xay.

d.)
$$10^2y - 3x = 2$$
 INCOL

Your turn: Linear Equation or not?

Dincon

non-linear

Your turn: Linear Equation or not?

linear

non-linear

Slope =
$$m$$
 (x_1, y_1) (x_2, y_2)

$$m = \frac{Rise}{Run}$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

<u>Positive Slope Graphs</u> (<u>Increasing or Rising</u>)

m>0

Negative Slope Graphs (Decreasing or Falling)

m<0

Slope=0 Graphs Honizontal

No Slope Graphs

(Undefined Slope)

V

2

†

i

$$\frac{c}{a} \times = 4$$

Example 1:

Find the Slope of the line that passes through the points (3,4) and (6, -8).

$$M = \frac{y_2 - y_1}{x_2 - x_1}$$

$$M = \frac{-8-4}{6-3} = \frac{-12}{3} = -4$$
 [m=-4]

Lesson 6: Section 2.2 & 2.3

Example 2:

Find the intercept points.

(Where the graph crosses each axis.)

x- intercept: (-5, 0)

y-intercept: (), 5

But how do we find the intercept point without a picture?

When looking for the y-intercept, plug a zero in for X and solve for Y. Write in paint

When looking for the x-intercept, plug a zero in for Y and solve for X. Write in point

Lesson 6: Section 2.2 & 2.3

Example 3:

Find the x-int and y-int of 2x + y = 6 and graph.

x-intercept:

- Plug in a zero for y
- Solve for x

$$\frac{X-int:(3,0)}{2x+0=6}$$
 $\frac{2x+0=6}{2}$
 $x=3$

y-intercept:

- Plug in a zero for x
- Solve for y

Example 3 continued:

Find the x-int and y-int of 2x + y = 6 and graph.

Lesson 6: Section 2.2 & 2.3

Example 4:

Find the x-int and y-int of x = 4

and graph.

y-int: none 0+4

Lesson 6: Section 2.2 & 2.3

Example 5:

Find the x-int and y-int of 3x + 4 = 7y and graph.

x-intercept:

- Plug in a zero for y
- Solve for x

y-intercept:

- Plug in a zero for x
- Solve for y

Example 5 continued:

Find the x-int and y-int of 3x + 4 = 7y

and graph.

Example 6:

Find the x-int and y-int of y = -3 and graph.

X-int: none

y-int: (0,-3)

Can the point of interception on the x-axis and the point of interception on the y-axis ever be the same point?

 When we only have one point (0,0), we need to pick another X and plug it into the equation to find Y. We now have another point to plot and can connect the points to make a line.

comes from equation

Objectives:

- ~ Find the Slope of a line
- ~ State whether an equation is Linear
- ~ Find x and y intercepts of a line
- ~ Graph a line by x and y intercepts

Can you?

Homework:

Assignment 6